
Proxion: Uncovering Hidden Proxy Smart Contracts
for Finding Collision Vulnerabilities in Ethereum

Cheng-Kang Chen∗
National Taiwan University

Wen-Yi Chu∗
National Taiwan University

Muoi Tran
ETH Zürich

Laurent Vanbever
ETH Zürich

Hsu-Chun Hsiao
National Taiwan University

ABSTRACT

The proxy design pattern allows Ethereum smart contracts to be
simultaneously immutable and upgradeable, in which an original
contract is split into a proxy contract containing the data storage
and a logic contract containing the implementation logic. This archi-
tecture is known to have security issues, namely function collisions
and storage collisions between the proxy and logic contracts, and
has been exploited in real-world incidents to steal users’ millions of
dollars worth of digital assets. In response to this concern, several
previous works have sought to identify proxy contracts in Ethereum
and detect their collisions. However, they all fell short due to their
limited coverage, often restricting analysis to only contracts with
available source code or past transactions.

To bridge this gap, we present Proxion, an automated cross-
contract analyzer that identifies all proxy smart contracts and their
collisions in Ethereum. What sets Proxion apart is its ability to
analyze hidden smart contracts that lack both source code and
past transactions. Equipped with various techniques to enhance
efficiency and accuracy, Proxion outperforms the state-of-the-art
tools, notably identifying millions more proxy contracts and thou-
sands of unreported collisions. We apply Proxion to analyze over
36 million alive contracts from 2015 to 2023, revealing that 54.2% of
them are proxy contracts, and about 1.5 million contracts exhibit at
least one collision issue.
ACM Reference Format:

Cheng-Kang Chen, Wen-Yi Chu, Muoi Tran, Laurent Vanbever, and Hsu-
Chun Hsiao. 2024. Proxion: Uncovering Hidden Proxy Smart Contracts
for Finding Collision Vulnerabilities in Ethereum. In Proceedings of ACM

Conference (Conference’17). ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Ethereum is a well-established, open-source blockchain platform
that enables decentralized applications on the Internet, such as
decentralized finance, voting systems, and non-fungible token mar-
ketplaces, through the creation and execution of smart contracts.
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA

© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

These smart contracts are deployed onto the Ethereum blockchain
network (i.e., being replicated across all participating nodes), fa-
cilitating autonomous and trustless execution of the contract’s
functions. Smart contracts are immutable — once deployed, they
cannot be changed or tampered with. While immutability ensures
the integrity and reliability of smart contract execution, it poses
challenges for updating smart contracts (e.g., to fix bugs or intro-
duce new features) since existing states (e.g., stored data, balances)
must be migrated to new smart contracts.

To enable smart contracts’ upgradeability while still adhering to
their immutability, the proxy design pattern has recently emerged
in several Ethereum Improvement Proposals (EIPs) (e.g., [3, 20,
30, 31, 38]) as well as in major blockchain-based companies like
OpenSea [35] and Compound [8]. Under this pattern, an original
smart contract is decoupled into two contracts: a proxy contract

that contains the data storage and a logic contract that contains the
implementation logic. The two contracts interact via delegate calls
that allow the logic contract’s functions to be executed in the con-
text of the proxy contract’s storage. To update the implementation
of smart contracts under this scheme, developers simply deploy a
new logic contract and change the logic contract’s address stored
in the proxy contract accordingly.

The emerging proxy architecture also comes with new security
issues, of which function collisions and storage collisions are the
most notable ones. Particularly, smart contract developers may
deliberately or accidentally create conflicts in the storage layouts or
function identifiers between the proxy and logic contracts. When
users execute these colliding contracts, such conflicts can lead to
stored data and functions being incorrectly accessed. Worse, they
can also be exploited by sophisticated adversaries to steal assets
from the victims who wrongfully execute malicious functions or
data. For example, attackers can create malicious contracts with
function collisions that disguise their scamming functionalities,
often known as honeypot contracts [46]. Outside of the academic
realm, adversaries have leveraged storage collisions to overwrite the
owner of Audius contracts, stealing more than a million worth of
tokens in the process [2]. Also, a bounty hunter discovered storage
collisions in the contract connecting the Ethereum and Arbitrum
blockchains, which could potentially be exploited to compromise
funds exceeding 250 million dollars [47].

Considering the severe consequences of proxy smart contracts
vulnerable to function and storage collisions in Ethereum, a few
prior works have focused on finding them [5, 11, 13, 41, 42]. Un-
fortunately, however, these research efforts fail to cover all smart
contracts, thus missing out on potential collision exploits. Notably,

ar
X

iv
:2

40
9.

13
56

3v
1

 [
cs

.C
R

]
 2

0
Se

p
20

24

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Cheng-Kang Chen, Wen-Yi Chu, Muoi Tran, Laurent Vanbever, and Hsu-Chun Hsiao

Smart contract coverage Collision coverage
With source code Without source code With source code Without source code

With tx Without tx With tx Without tx Function Storage Function Storage
EtherScan [11] ✓ ✓

Slither [13] ✓ ✓ ✓ ✓

Salehi et al. [42] ✓ ✓

USCHunt [5] ✓ ✓ ✓ ✓

CRUSH [41] ✓ ✓ ✓ ✓

Proxion (this work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Proxion uncovers more proxy smart contracts than previous works, especially including the hidden contracts that
do not have source code and past transactions (acronym: tx) available. As a result, Proxion also discovers more collision

vulnerabilities, notably function collisions in contracts lacking source code. Proxion’s novel coverage is highlighted in green.

EtherScan [11], Slither [13], and USCHunt [5] are limited to an-
alyzing contracts with source code published by the developers.
Meanwhile, over 80% of smart contracts are only available as de-
ployed bytecode (i.e., the compiled source code), see Section 3.1.
Moreover, CRUSH [41] and Salehi et al. [42] can identify proxy
smart contracts only if they have previously interacted with logic
smart contracts through transactions. This constraint causes them
to overlook nearly half of the active Ethereum contracts, particu-
larly the newly deployed ones.

Failing to cover all smart contracts for proxy detection can lead
to undesirable outcomes. A clear consequence is that the scope of
current tools in identifying collision problems is also limited. In-
deed, no prior research has successfully detected function collisions
using only the bytecode of proxy and logic contracts. For exam-
ple, USCHunt [5] and Slither [13] are restricted to contracts with
accessible source code, whereas CRUSH [41] is tailored to detect
only storage collisions. Worse, adversaries might deploy malicious
contracts (e.g., honeypot contracts [46]) and hide them from these
analysis tools by not publishing their source code or interacting
with other contracts. These shortcomings highlight the necessity
for a novel, effective assessment method for all contracts, thereby
enabling thorough collision checks.

To that end, we introduce Proxion, an automated cross-contract
analyzer that aims to uncover all proxy smart contracts in Ethereum.
In essence, Proxion emulates the execution of the contract under
test with carefully crafted inputs that trigger distinct behaviors
of proxy contracts (e.g., making delegate calls to other contracts).
Therefore, Proxion does not require the contract’s source code
or its past transactions like prior works. Once a proxy contract
is identified, Proxion efficiently locates the associated logic con-
tracts throughout the blockchain history. Subsequently, for each
proxy and logic contract pair, Proxion identifies function and stor-
age collisions using various analysis techniques, depending on the
availability of their source codes. Table 1 compares Proxion with
related works, highlighting its novel ability to cover hidden con-
tracts lacking source code and historical transactions, as well as
function collisions when contract source codes are unavailable.

In addition to providing broader coverage of smart contracts and
collisions compared to previous studies, Proxion stands out for its
efficiency, effectiveness, and precision, as shown in our thorough
evaluation. Specifically, Proxion can analyze all 36 million active
smart contracts in just 65 hours on a commodity server, processing

an average of about 150 contracts per second. Moreover, Proxion
has identified thousands of vulnerable contracts with unreported
collision issues, affecting at least 11 entities in control of a total of
19 billion USD in stakes. In terms of accuracy, Proxion achieves
78.2% in detecting storage collisions and 99.5% in detecting function
collisions, also surpassing the performance of state-of-the-art tools.

In summary, we claim the following contributions.

• We introduce Proxion, an automated cross-contract ana-
lyzer designed to assess proxy smart contracts in Ethereum
for their function and storage collisions without the need
for access to their source codes or historical transactions.
• We implement Proxion and demonstrate that it is efficient,
effective, and accurate while covering significantly more con-
tracts and collisions than state-of-the-art contract analyzers.
• We use Proxion to analyze all alive Ethereum smart con-
tracts, uncovering nearly 20 million proxy contracts, detect-
ing 1.5 million collision issues, and capturing several insight-
ful trends in developing proxy contracts over the years.

2 BACKGROUND

In this section, we provide the background by introducing the
Ethereum blockchain (§2.1), reviewing proxy smart contracts (§2.2),
and describing their collision issues (§2.3).

2.1 Ethereum Blockchain

Ethereum stands as a widely adopted cryptocurrency. It operates
on the principles of a distributed state machine where peer-to-peer
nodes collaboratively maintain a global state consisting of users’
accounts and balances. A typical Ethereum node comprises a con-
sensus client implementing the proof-of-stake algorithm and an
execution client responsible for propagating and executing transac-
tions within the Ethereum Virtual Machine (EVM), thereby deter-
ministically generating a new blockchain state. These transactions
serve the purpose of deploying specialized programs known as
smart contracts onto the Ethereum network or executing functions
within deployed smart contracts.

Specifically, a smart contract is a program written in high-level
languages such as Solidity [14] or Viper [6], which is then compiled
into EVM bytecode. Deploying a smart contract to the Ethereum
blockchain essentially means creating a new contract account con-
taining its compiled bytecode and data storage. The data storage

Proxion: Uncovering Hidden Proxy Smart Contracts for Finding Collision Vulnerabilities in Ethereum Conference’17, July 2017, Washington, DC, USA

stores variables consecutively based on the order in which they are
declared. Subsequently, users can trigger the EVMs to execute func-
tions within the deployed smart contract by sending transactions
that meet the predefined conditions, such as proper input data (i.e.,
call data1), to the contract account’s address. These transactions are
termed external transactions and can be initiated by any externally
owned account that interacts with a contract on the blockchain. In
contrast, internal transactions occur when a smart contract invokes
the functions of another smart contract.

To execute a smart contract function, the transaction’s call data
encodes a series of bytes, including a function selector (also known
as the function signature) and the function’s arguments. The func-
tion selector is created by hashing the function’s prototype string
using the Keccak-256 hashing function and truncating the out-
put to the first four bytes. For instance, the function selector for
free_ether_withdrawal() is 0xdf4a3106. This selector is fol-
lowed by a series of bytes representing the function’s arguments,
encoded depending on the compilers.

During the execution of smart contract bytecode, EVMs sequen-
tially interpret and execute lower-level, machine-readable instruc-
tions known as opcodes. Specifically, the EVM extracts the function
selector, parses its arguments, and executes the function body. If
the call data’s function selector does not match any defined func-
tion, the EVM will execute a fallback function if one is present in
the smart contract. It is also worth noting that execution occurs
within a stack machine, where a stack—acting as a list of 32-byte ele-
ments—holds the inputs and outputs of smart contract instructions.
Items added to the stack are placed at the top, and instructions
typically interact with the stack’s topmost elements. Additionally,
during the execution, the EVMs may use a transient memory that
is cleared after each transaction or access the persistent storage of
the smart contracts.

2.2 Proxy Smart Contracts in Ethereum

Ethereum smart contracts are designed to be immutable, meaning
their bytecode remains unchanged after being deployed on the
blockchain. Nonetheless, similar to conventional programs, smart
contracts require updates to introduce new features, correct errors,
or address security flaws. A naive solution to updating a smart con-
tract’s logic is migrating its states and balances into a new contract
with the updated program. Obviously, such a migration does not
scale, as all affected users need to update their workflows to use a
new contract address. The need for smart contract upgradability
motivates several proposals for splitting a smart contract into two
parts: a proxy contract storing the data and a logic contract storing
the implementation logic [3, 20, 30, 31, 38].

We illustrate the essence of proxy smart contracts in Figure 1.
The proxy smart contract facilitates a delegate call to a function
in the logic contract. Here, the delegate call allows the execution
of the logic contract’s function in the context of the proxy con-
tract’s storage. In particular, the user encodes the call data for that
function in an Ethereum transaction sent to the proxy contract.
This call data contains a function selector that does not match any

1Call data is used to call a specific contract’s function, which should not be confused
with calldata, which is the temporary location where function arguments are stored
in the EVM.

call data

contract Proxy {

 address private logic;

 [...]

 function impl_() {

 [...]

 }

 fallback(bytes calldata input) {

 [...]

 logic.delegatecall(input)

 }

User

Proxy contract

Logic contract v2Logic contract v1

Figure 1: An example of proxy and logic smart contracts. The

proxy contract’s delegate call forwards the call data to the

upgraded logic contract.

existing proxy contract functions, allowing it to be passed to the
proxy contract’s fallback function. As a result, the delegate call in
the fallback function is triggered, executing the logic contract’s
functions while accessing the proxy contract’s storage.

Naturally, an important application of proxy smart contracts is
upgrading the logic implementations. To enable upgradeability, the
proxy contract stores the logic contract’s address, usually in one of
its storage slots, see logic variable in Figure 1. When upgrading
to a new logic contract (e.g., v2 in Figure 1), the user only needs
to replace the logic contract’s address stored in the proxy contract
(e.g., using a setter call). Another notable application of proxy
smart contracts is cloning exact contract functionalities [31]. Often,
these proxy contracts contain no function but only delegate calls
to a fixed logic contract’s address stored directly in the bytecode.

This paper excludes library contracts with reusable code for gen-
eral use, such as SafeMath [19], from the definition of logic smart
contracts and, therefore, does not automatically classify contracts
that call them as proxy smart contracts. Specifically, in these exter-
nal library calls, delegate calls occur at different code locations, not
in the fallback function. This eliminates the possibility of upgrad-
ability, as it prevents users from choosing whether to execute the
library contract’s functions. Indeed, all Ethereum Improvement Pro-
posals (EIPs) concerning the proxy smart contract pattern exclude
library contracts from their scope.

In short, Proxion considers a contract to be a proxy contract if
it uses the delegate call in its fallback function to forward the call
data it has received to another contract, and any contract receiving
forwarded call data from a proxy contract is a logic contract.

2.3 Collision Vulnerabilities

Separating storage and implementation logic in proxy architecture
leads to various issues, notably function and storage collisions.
These collisions have posed significant risks to proxy and logic
contracts, potentially enabling attacks that aim to steal stored assets.

Function collision vulnerability. A function collision occurs
when a proxy contract’s function has the same signature as a logic
contract’s function. When it happens, users cannot execute the
collided functions in the logic contract because the call data is not
passed to the fallback function in the proxy contract. The most

Conference’17, July 2017, Washington, DC, USA Cheng-Kang Chen, Wen-Yi Chu, Muoi Tran, Laurent Vanbever, and Hsu-Chun Hsiao

1 contract Proxy {
2 address private owner;
3 address private logic; // Logic contract 's address
4 address constant USDT =
5 0xdAC17F958D2ee523a2206206994597C13D831ec7;
6
7 constructor(address impl) {
8 owner = msg.sender;
9 logic = impl;
10 }
11
12 function impl_LUsXCWD2AKCc () public {
13 // a malicious function stealing 1000 USDT from the caller
14 USDT.delegatecall(abi.encodeWithSignature(
15 "transfer(address ,uint256)", owner , 1000
16));
17 }
18
19 fallback(bytes calldata input) external
20 returns (bytes memory) {
21 (bool success , bytes memory output) =
22 logic.delegatecall(input);
23 return output;
24 }
25 }
26
27 contract Logic {
28 function free_ether_withdrawal () public {
29 // an attractive function that sends the caller 10 Ethers
30 payable(msg.sender).transfer (10 ether);
31 }
32 }

Listing 1: An example of function collisions between

the proxy and logic contracts. The proxy contract’s

impl_LUsXCWD2AKCc() function collides with a logic contract’s

free_ether_withdrawal() due to their same signatures.

obvious scenario of function collisions is when a proxy contract’s
function has the same name as a logic contract’s function. The
two collided functions may also differ as long as they share the
same first 4 bytes in their hashes. Listing 1 illustrates an example of
function collisions, in which two functions impl_LUsXCWD2AKCc()
(line 12) and free_ether_withdrawal() (line 28) have the same
4-byte signature of 0xdf4a3106. As a result, when the user en-
codes this signature in the call data, the proxy contract will exe-
cute impl_LUsXCWD2AKCc() instead of calling the logic contract’s
free_ether_withdrawal().

Potential exploits.Malicious contract developers can exploit func-
tion collisions to trick users into executing honeypot contracts [46].
In such attacks, the adversary creates a logic contract with an entic-
ing function, such as transferring cryptocurrencies to the function
caller, which actually collides with a proxy contract’s function that
steals funds from the caller. We exemplify the honeypot contracts in
Listing 1, where function free_ether_withdrawal() in the logic
contract allows the caller to withdraw 10 ETH from the contract’s
balance (line 30). However, since this function has the same func-
tion selector with impl_LUsXCWD2AKCc(), the user transfers 1,000
USDT to the contract owner instead (lines 14–16).

We note that creating a pair of functions that share the same
4-byte signature is remarkably easy and achievable within sec-
onds on even modest computers. Attackers might also craft func-
tions that follow a certain naming pattern or share the same sig-
nature with existing functions, requiring more time. For instance,
after approximately 600 million attempts in 1.5 hours with a com-
modity laptop, we found a function with the same signature as

1 contract Proxy {
2 address private owner; // Storage slot [0x0]
3 [...]
4 address private logic; // Logic contract 's address
5
6 constructor(address impl) {
7 logic = impl;
8 }
9 [...]
10 fallback(bytes calldata input) external
11 returns (bytes memory) {
12 (bool success , bytes memory output) =
13 logic.delegatecall(input);
14 return output;
15 }
16 }
17
18 contract Logic {
19 bool private initialized; // Storage slot [0x0]
20 bool private initializing; // Storage slot [0x0]
21
22 function initialize () external {
23 require(initializing || !initialized);
24 initialized = true;
25 initializing = false;
26 owner = msg.sender;
27 }
28 [...]
29 }

Listing 2: An example of storage collisions between the proxy

and logic contracts. The storage collision occurs at slot 0
between the owner variable (20 bytes) in the proxy contract

versus initialized and initializing variables (1 byte each)

in the logic contract.

free_ether_withdrawal(). Overall, the process of finding collid-
ing functions remains highly accessible for motivated adversaries,
emphasizing the significant risks posed by function collisions.

Storage collision vulnerability. A storage collision happens
when two variables with different types or interpretations are as-
signed to the same storage slots across proxy and logic contracts.
To see why such collisions may occur, recall that the logic contract
is executed in the context of the proxy contract’s storage, mean-
ing that two contracts share the same storage layout. For example,
the first variable declared in the logic contract, regardless of its
name and type, will access the storage slot 0 of the proxy contract.
Commonly, if multiple contiguous variables require less than 32
bytes (for example, a bool is 1 byte or an address is 20 bytes), they
will be packed into a single storage slot (e.g., in Solidity). Thus,
collisions often come from mismatched storage layouts (i.e., the
orders of variable declarations) and can cause data to be incorrectly
read or overwritten. The most frequent cause of storage collisions
is when one contract writes to a slot, and another reads from that
slot with a different interpretation. Upgrading the logic contract to
newer versions that change the order or types of variables also facil-
itates storage collisions. We show an example of storage collisions
in Listing 2 where proxy contract’s owner variable (20 bytes) and
logic contract’s initialized and initializing variables (1 byte
each) use the same storage slot 0. Thus, when the user executes a
logic contract function involving the initialized variable, it may
access 1 byte of the owner variable in the proxy contract.

Potential exploits. Storage collisions can be exploited to seize
control of vulnerable contracts by overwriting the owner’s address
with that of the attacker [2]. Additionally, adversaries can deceive
users into executing malicious logic contracts in which variables

Proxion: Uncovering Hidden Proxy Smart Contracts for Finding Collision Vulnerabilities in Ethereum Conference’17, July 2017, Washington, DC, USA

may have names that seem harmless but are designed to access
storage slots in the proxy contract, leading to actions that differ
from the user’s expectations.

For example, Listing 2 presents a simplified illustration of the
vulnerable proxy and logic contracts exploited in the real-world
attacks against the Audius cryptocurrency [2]. In this example,
the logic smart contract contains an initialize() function that
sets the transaction’s sender as the owner of the contract (line 26)
if the owner has not been set previously (line 23). This function
is intended to be called only once during contract deployment.
However, the owner variable in the proxy contract (line 2) and the
initialized and initializing variables in the logic contract are
both allocated to the same storage slot number 0. Consequently,
even after the initialized and initializing variables are up-
dated (lines 24–25), indicating the owner has been assigned, the
storage slot is immediately overwritten by the new owner value
(line 26) in the proxy contract. Consequently, the initializing
variable in the logic contract is always true, wrongly indicating
that the contracts have not completed the initialization. This allows
the initialize() function to be executed multiple times and the
owner variable to be reassigned. Attackers indeed exploited this
vulnerability to take control of the Audius governance contracts,
as detailed in Audius’s post-mortem report [2].

3 PROXION OVERVIEW

This section provides an overview of our tool Proxion. First, we dis-
cuss the necessity for a novel tool to uncover proxy smart contracts
within Ethereum and outline the challenges that current solutions
fail to address (§3.1). We then briefly present the methods by which
Proxion overcomes these challenges (§3.2).

3.1 Motivation

Proxy smart contracts are crucial in the Ethereum ecosystem due
to their upgradability, yet they are vulnerable to exploitation if
collision vulnerabilities are present. Unfortunately, the best prac-
tices of proxy smart contracts fall short for both developers and
users. Specifically, users must manually review the source code
of both proxy and logic contracts before any interaction, such as
sending a transaction. Should a proxy contract lack available source
code, it is advised that users avoid engaging with it to prevent po-
tential misuse despite possibly missing out on legitimate services.
Developers of proxy smart contracts are recently equipped with
the new Transparent Upgradeable Proxy design proposed by Open-
Zeppelin [36] that minimizes the impacts of function collisions.2
However, adopting a new proxy design is time-consuming, while
existing proxy contracts may already contain vulnerabilities due to
human errors.

To facilitate the safety assessment of proxy smart contracts, vari-
ous systems have been recently introduced to automatically identify
collision vulnerabilities [5, 13, 41]. At the high level, these systems
typically involve two main phases: (1) identifying proxy contracts
and their corresponding logic contracts from historical data, and (2)
examining each contract pair to determine if there are any colliding
2In the Transparent Upgradeable Proxy pattern, the owner of the contracts is able
to execute all functions with the exception of the fallback function, whereas other
users always delegate calls. This architecture, by distinguishing between the callers,
prevents unintended function executions and inherently avoids function collisions.

2015 2016 2017 2018 2019 2020 2021 2022 2023
0

5

10

15

20

25

30

35

40

N
um

be
r o

f a
liv

e
sm

ar
t c

on
tra

ct
s (

m
ill

io
n) Only source code

Source code + transaction
Only transaction
No source code, no transaction

Figure 2: The accumulated number of alive Ethereum smart

contracts till 31 October 2023. Prior works only cover about

18% of smart contracts with source code (blue and orange) [5]

or 53% of smart contracts with past transactions (orange and

green) [41], while Proxion also applies to the hidden con-

tracts without source code or past transactions (red).

functions or storage slots. While the approach seems straightfor-
ward, several challenges remain, leaving a non-negligible number
of proxy smart contracts unchecked and potentially vulnerable to
exploitation.

First, the source code of smart contracts may not be available
because the public blockchain contains only their runtime bytecode.
The contract bytecode is not human-readable, making the analysis
(e.g., checking for delegate calls in the fallback function) difficult.
Indeed, several existing tools (e.g., USCHunt [5], Slither [13]) can
only analyze smart contracts when their source code is published
(e.g., on EtherScan [11]). Figure 2 shows the accumulated number of
alive

3 Ethereum smart contracts from 2015 to 2023. Unfortunately,
we notice that smart contracts with source code available only
account for less than 20% of all contracts.

Second, uncovering proxy smart contracts through their histori-
cal interactions with other (logic) smart contracts might also not
always be feasible. Specifically, existing tools (e.g., CRUSH [41],
Salehi et al. [42]) analyze all blockchain transactions to detect
DELEGATECALL instructions, identifying contracts involved as proxy
and logic contract pairs. This approach is applicable to all smart
contracts, even those with only bytecode available. However, it
can result in numerous false positives, as common library calls
may also contain DELEGATECALL instructions. Furthermore, many
smart contracts have never interacted with others, such as those
freshly deployed on the blockchain. In fact, our data in Figure 2
indicates that only about half of the active smart contracts have had
interactions with other contracts and are therefore detectable by
these tools. Intuitively, adversaries may exploit these by concealing
malicious proxy contracts, such as not releasing their source code
and avoiding prior interactions with other smart contracts.

Third, even when proxy and logic smart contracts with only
bytecode are uncovered (e.g., using CRUSH [41]), detecting their
function collisions is highly error-prone due to the lack of informa-
tion obtained from their bytecode. As we will show shortly below,
3We exclude the destroyed smart contracts.

Conference’17, July 2017, Washington, DC, USA Cheng-Kang Chen, Wen-Yi Chu, Muoi Tran, Laurent Vanbever, and Hsu-Chun Hsiao

function signatures, which are four bytes long, always appear after
a specific byte (i.e., the PUSH4 opcode) in the contract’s bytecode.
A naive function collision detection would cross-check any four
bytes following the PUSH4 opcode in the proxy and logic contracts
pair. However, this method is flawed as arbitrary data may also
follow the PUSH4 opcode, leading to numerous false positives. For
this reason, no previous research has managed to detect function
collisions solely from bytecode; for example, USCHunt [5] and
Slither [13] are limited to contracts with available source code,
whereas CRUSH [41] is designed to identify storage collisions only.

3.2 Solutions

In this paper, we propose Proxion, an automation tool that aims
to reveal all proxy smart contracts and their corresponding logic
contracts. The main novelty of Proxion is its capability to identify
the hidden proxy smart contracts that lack both source code and
previous transactions. To achieve that, Proxion employs dynamic
analysis to verify whether the delegate calls forward the transaction
call data in the fallback function. Specifically, for a given smart con-
tract, Proxion emulates its EVM execution using carefully crafted
call data. If a smart contract is indeed a proxy, a DELEGATECALL
instruction will appear in the EVM stack and vice versa. Through
the emulation of EVM execution, Proxion can also identify the
storage locations of the logic contracts’ addresses, enabling their
easy retrieval from historical blockchain data. Consequently, unlike
previous methods, Proxion is not dependent on the source code or
historical transactions of the smart contracts under test.

Thereafter, given a pair of proxy and logic smart contracts, Prox-
ion searches for potential storage and function collisions. For stor-
age collisions, Proxion utilizes symbolic execution and program
slicing techniques from the state-of-the-art tool CRUSH [41] to
identify exploitable contracts. Regarding function collisions, Prox-
ion compares the function signatures pairwise using Slither [13]
if both proxy and logic contracts have their source code available.
Here, another innovation of Proxion lies in detecting function
collisions, even when one or both of the contracts do not have
available source code. Specifically, when a contract exists solely in
bytecode, Proxion examines the disassembled opcodes to identify
the jump instructions corresponding to code blocks of functions.
Proxion then extracts the 4-byte data of the function signature
that precedes these jump instructions. While the exact function
names remain undisclosed, retrieving these signatures is sufficient
for Proxion to cross-reference and detect any function collision.

A prototype of Proxion, featuring the proxy smart contract
finder and the collision detector, is accessible at https://github.com/

Proxion-anonymous/Proxion.

4 UNCOVERING PROXY SMART CONTRACTS

We illustrate the two-step approach to check if a given smart con-
tract is a proxy contract in Figure 3. The approach includes dis-
assembling smart contracts to locate DELEGATECALL instructions
(§4.1) and emulating the EVM execution to verify the contract’s in-
teraction with other contracts (§4.2). Then, Proxion also identifies
all logic contracts associated with identified proxy contracts from
historical blockchain data (§4.3).

PUSH1
MSTORE
GASPRICE
…

PUSH1
MSTORE
DELEGATECALL
…

PUSH1
CALLER
DELEGATECALL
…

call data:
0x025313a2…

disassembling
into opcodes

emulating
EVM execution

call data:
0x42966c68…

0x42966c68

Figure 3: Proxion identifies proxy smart contracts in two

steps. First, Proxion disassembles the tested contract’s byte-

code into opcodes. Contracts without a DELEGATECALL opcode

(e.g., ➊) are not proxies. Second, Proxion executes the tested

contract under an emulated EVMwith carefully created trans-

action call data. If this data is not forwarded to another con-

tract in the emulated EVM, the contract is not a proxy (e.g.,

➋) and vice versa (e.g., ➌). Proxion then identifies the asso-

ciated logic contracts of the identified proxy contract.

1 0000 60 PUSH1 0x80
2 0002 60 PUSH1 0x40
3 0004 52 MSTORE
4 0005 34 CALLVALUE
5 0006 80 DUP1
6 0007 15 ISZERO
7 0008 61 PUSH2 0x000f
8 000B 57 *JUMPI
9 [...]
10 // function selection process
11 001A 35 CALLDATALOAD
12 001B 60 PUSH1 0xe0
13 001D 1C SHR
14 001E 80 DUP1
15 001F 63 PUSH4 0xdf4a3106 // signature of impl_LUsXCWD2AKCc ()
16 0024 14 EQ
17 0025 61 PUSH2 0x00ce
18 0028 57 *JUMPI
19 [...]
20 // fallback ():
21 007C 5B JUMPDEST
22 007D 5F 5F
23 007E 60 PUSH1 0x40
24 0080 51 MLOAD
25 0081 80 DUP1
26 0082 83 DUP4
27 0083 03 SUB
28 0084 81 DUP2
29 0085 85 DUP6
30 0086 5A GAS
31 0087 F4 DELEGATECALL
32 [...]
33 // impl_LUsXCWD2AKCc ():
34 00CE 5B JUMPDEST
35 [...]

Listing 3: The disassembled opcodes for the proxy smart

contract’s bytecode presented in Listing 1.

4.1 Disassembling Smart Contracts

In the first step, Proxion determines the tested smart contract
is not a proxy if its bytecode does not contain the DELEGATECALL

https://github.com/Proxion-anonymous/Proxion
https://github.com/Proxion-anonymous/Proxion

Proxion: Uncovering Hidden Proxy Smart Contracts for Finding Collision Vulnerabilities in Ethereum Conference’17, July 2017, Washington, DC, USA

opcode, which is the defining factor of all proxy smart contracts.
To learn the opcodes of a smart contract, Proxion disassembles its
bytecode, which results in a sequence of assembly representation
known as opcodes and operands (e.g., [16, 18]).

We implement this disassembler component of Proxion based
on Octopus, an open-source security analysis framework that is ca-
pable of translating contract bytecode into opcodes and operands [49].
Particularly, we extendOctopus so that it covers recently introduced
opcodes in Ethereum, such as CALL, DELEGATECALL, CREATE, and
CREATE2. This is easily achievable since the opcodes have fixed
corresponding bytes. Listing 3 illustrates an example of the opcodes
after being disassembled from the proxy contract’s bytecode shown
previously in Listing 1.

Thereafter, Proxion spots if any DELEGATECALL opcode exists,
concluding the smart contract is not a proxy (e.g., contract ➊) or
proceeding to the next step (e.g., contracts ➋ and ➌).

4.2 Emulating EVM Execution

In the second phase, Proxion checks if delegate calls are triggered
in the tested smart contract’s fallback function, and they indeed
forward the transaction call data to another smart contract. To do so,
Proxion triggers the tested smart contract with an emulated EVM
and carefully crafted call data. Particularly, this call data contains a
random function signature (i.e., with 4 bytes in size) that is different
from signatures of all other functions in the proxy contract. Thus,
it enables the execution of the proxy contract’s fallback function.
To learn the potentially existing functions’ signatures, Proxion
identifies the locations of PUSH4 opcodes in the contract’s bytecode
and extracts the 4-byte data following each of them. This approach
is based on an observation that popular contract compilers (e.g.,
Solidity, Vyper) always include the function signatures following
PUSH4 opcodes. While not all 4-byte data following PUSH4 opcodes
is a function signature, Proxion safely avoids all of them. Next,
Proxion emulates the EVM execution of the tested smart contract
along with the generated transaction call data and observes the
memory, stack, and storage of each instruction. If Proxion does
not observe this data is passed to the logic contract’s context after
the execution of the DELEGATECALL instruction, Proxionmarks the
tested smart contract as not a proxy (e.g., contract ➋). Otherwise,
the tested smart contract is a proxy (e.g., contract ➌).

Here, we again extend Octopus to implement our EVM emulator.
Specifically, our EVM emulator can also handle opcodes that have
values depending on the state of the blockchain. For example, to
support the NUMBER opcode that pushes the current block’s number
to the EVM stack, we use the values from the latest block on the
blockchain since all alive contracts are supposed to be executable
at any block’s numbers. Similarly, we use the values in the latest
block for the BLOCKHASH, DIFFICULTY, GASLIMIT, TIMESTAMP, and
GASPRICE opcodes. We also assign fixed values for a few other op-
codes, such as CHAINID, BASEFEE, and COINBASE, using the most
probable values (e.g., the chain ID of Ethereum’s mainnet is 1).
Adding these blockchain-related opcodes enhances the fidelity of
the EVM emulation (e.g., with fewer runtime errors when encoun-
tering them).

Moreover, we implement our EVM emulator to support CALL
and DELEGATECALL opcodes that specifically call another contract

Algorithm 1 Finding addresses contained in a storage slot.
Require: PSC: The tested proxy smart contract.

ℎ𝑙𝑜𝑤𝑒𝑟 , ℎ𝑢𝑝𝑝𝑒𝑟 : The lower and upper bounds for the height of consid-
ered blocks (e.g., the genesis block and the latest block).

Ensure: A: The set of logic contracts’ addresses associated with PSC.

1: procedure PartitionBlocks(ℎ𝑙𝑜𝑤𝑒𝑟 , ℎ𝑢𝑝𝑝𝑒𝑟)
2: V𝑙𝑜𝑤𝑒𝑟 ← getStorageAt(PSC, ℎ𝑙𝑜𝑤𝑒𝑟)
3: V𝑢𝑝𝑝𝑒𝑟 ← getStorageAt(PSC, ℎ𝑢𝑝𝑝𝑒𝑟)
4: if V𝑙𝑜𝑤𝑒𝑟 = V𝑢𝑝𝑝𝑒𝑟 then ⊲ Storage slot values are the same.
5: return {𝑉𝑙𝑜𝑤𝑒𝑟 }
6: end if

7: ℎ𝑚𝑖𝑑 ← ⌊(ℎ𝑙𝑜𝑤𝑒𝑟 + ℎ𝑢𝑝𝑝𝑒𝑟)/2⌋ ⊲ Binary search.
8: A𝑙𝑜𝑤𝑒𝑟 ← PartitionBlocks(ℎ𝑙𝑜𝑤𝑒𝑟 , ℎ𝑚𝑖𝑑)
9: A𝑢𝑝𝑝𝑒𝑟 ← PartitionBlocks(ℎ𝑚𝑖𝑑 + 1, ℎ𝑢𝑝𝑝𝑒𝑟)
10: A ← A𝑙𝑜𝑤𝑒𝑟 + A𝑢𝑝𝑝𝑒𝑟 − {∅}
11: return A
12: end procedure

and obtain the execution results before proceeding. To do so, we
create two EVM emulator instances, one for the caller and another
for the callee, and copy the results back from the callee to the stack
of the caller instance to simulate the function returning.

For the opcodes that place bytecode on Ethereum at a smart-
contract address (e.g., CREATE and CREATE2), we use a fixed address
to ensure that we can retrieve the exact address of a newly created
contract. If our EVM emulator encounters this fixed address, we
treat it like a normal smart contract. This method is acceptable
because of the negligible probability of address collision (e.g., only
1 out of 2160 in Ethereum).

4.3 Finding associated logic contracts

Upon identifying a proxy smart contract, Proxion finds its asso-
ciated logic contracts, which also can be done by looking into the
EVM stack when the DELEGATECALL instruction is executed. Indeed,
the address of the current logic contract is one of the stack inputs
following the DELEGATECALL instruction.

Next, Proxion also finds all other logic smart contracts that are
ever associated with the tested proxy contract. If Proxion observes
the found logic contract’s address is hard-coded in the proxy con-
tract’s bytecode, it considers the test proxy contract follows the
minimal proxy pattern (i.e., EIP-1167). These minimal proxy con-
tracts include no function but only a delegate call in the fallback
function and fix the address of the logic contract in the bytecode.
Thus, they are lightweight (e.g., their bytecode is less than 100
bytes) and have only one associated logic smart contract through-
out history.

If the found logic contract’s address is in a proxy contract’s
storage slot, Proxion employs a binary search to uncover all ad-
dresses that have been stored in that slot. Naively, one can utilize
Ethereum APIs such as getStorageAt to check the slot’s content
at specific blockchain height (e.g., from the genesis block to the
latest one), which is time-consuming when millions of Ethereum
blocks exist. Instead, Proxion assumes that logic contracts of the
same proxy contract are unique throughout history since reusing
old versions of logic contracts (e.g., containing bugs or missing
features) is intuitively uncommon. Leveraging this observation,

Conference’17, July 2017, Washington, DC, USA Cheng-Kang Chen, Wen-Yi Chu, Muoi Tran, Laurent Vanbever, and Hsu-Chun Hsiao

Proxion implements a binary search for blocks in which the value
of the storage slot changes.

We illustrate how Proxion finds the logic contracts’ addresses in
Algorithm 1. Particularly, Proxion starts with the genesis block and
the latest block and compares the storage slot values at these two
blocks (i.e., lines 2–3). If the values are the same, the storage slot
does not change during this block range (i.e., lines 4–6). Otherwise,
Proxion splits the range into two halves and repeats this procedure
(i.e., lines 7–9). Proxion finally returns a set of all values ever stored
in the tested proxy smart contract; see line 11.

5 CHECKING FOR COLLISIONS

Once Proxion identifies proxy and logic contracts, it detects if they
are susceptible to function (§5.1) and storage collisions (§5.2).

5.1 Function collisions

Once the proxy contract and its associated logic contracts are iden-
tified, Proxion utilizes Etherscan [11], a widely-used Ethereum
explorer, to obtain their source code. To maintain a uniform format
for the contract source code, we have developed a parser that pro-
cesses the source code provided by the Etherscan APIs, which may
be in the form of dictionaries or arrays.

For a pair of proxy and logic contracts with available source
code, Proxion implements a static analyzer based on Slither [13]
to detect their function collisions. In particular, we generate a list
of signatures for all functions in each contract. If there is an inter-
section between these lists, the contracts are considered to have
a collision. To speed up the collision detection in a large dataset
of contracts (see Section 7), Proxion also groups contracts based
on their bytecode hash, indicating that the contracts are identical
despite being deployed at different addresses.

When one or both of the proxy or logic contracts do not have
source code, Proxion analyzes the disassembled opcodes instead.
It is important to remember that function signatures are always
preceded by a PUSH4 opcode, although the converse is not true (i.e.,
the data following a PUSH4 opcode can be arbitrary). Therefore,
the challenge lies in identifying which 4-byte data subsequent to
the PUSH4 opcodes actually constitutes a function signature. To
achieve this, Proxion begins by identifying the jump instructions
(e.g., JUMP or JUMPI opcodes), which divide the disassembled code
into several basic blocks. These code blocks may represent if-else
statements, loops, or function calls, which are distinguishable by
how the EVM execution reaches them via the jump instructions. In
particular, the EVM execution typically jumps to a specific function
after a condition involving its function signature is satisfied (e.g.,
when call data contains that signature). Thus, Proxion searches
for a pattern of opcodes containing PUSH4 (i.e., pushing 4 bytes),
EQ (i.e., equal), and *JUMPI (i.e., conditional jump), see line 15–18
in Listing 3. Proxion then extracts the 4-byte sequence following
the PUSH4 opcode within these patterns, treating it as the function
signature. Once Proxion has gathered function signatures from
both the proxy and logic contracts, Proxion simply cross-checks
them pairwise, similarly to when both contracts have source code.

In terms of implementation, Proxion utilizes the state-of-the-
art decompiler tool Panoramix [24], an integral part of Etherscan,

to disassemble the bytecode and identify the code blocks. Prox-
ion then parses Panoramix’s outputs to identify the functions and
retrieve their signatures.

5.2 Storage collisions

Proxion utilizes techniques fromCRUSH [41] to identify exploitable
storage collisions. To ensure a comprehensive understanding, we
briefly explain the fundamental operations of CRUSH.

First, CRUSH identifies the storage slots possibly accessed by
the SLOAD or SSTORE instructions, which can be found after disas-
sembling the contract’s bytecode. Subsequently, CRUSH employs
program slicing to extract all instructions that contribute to the com-
putation of the storage slots. Following this, CRUSH symbolically
executes these instructions to learn the size of the variables within
the specified slots, thereby deducing their types. Then, CRUSH com-
pares all storage slots pairwise to uncover any type discrepancies
suggesting a possible collision.

Upon detecting storage collisions, CRUSH identifies those that
are potentially exploitable. CRUSH specifically targets sensitive
storage slots involved in access control decisions, such as read-only
slots or those written exclusively by certain users. It then generates
test transactions to trigger collisions in these sensitive slots by
writing one variable type and then reading a different type from
the same slot. These transactions are subsequently fed to the EVM
execution to verify the exploit.

6 EVALUATION

This section evaluates Proxion’s performance, effectiveness, and
accuracy. We first demonstrate that Proxion is efficient, capable
of performing hundreds of proxy contract checks per second on a
commodity computer (§6.1). Next, we show that Proxion effectively
identifies unknown proxy and logic contracts that are susceptible
to function and storage collisions within already examined datasets
(§6.2). Lastly, we demonstrate that Proxion’s accuracy surpasses
that of the state-of-the-art tools (§6.3).

6.1 Performance

Setup. We operate Proxion on a system equipped with Ubuntu
22.04 OS, featuring 12 cores (24 threads) at 3.8 GHz each, and 64
GB of RAM. The input for Proxion is a list of all 36 million active
contract addresses in Ethereum (see Section 7). Its output includes
a list of proxy contracts and the logic contracts associated with
each of them. Additionally, Proxion provides details of function
and storage collisions for each proxy and logic contract pair, if such
collisions exist.

Results. On average, Proxion analyzes a smart contract in just
6.4 milliseconds to determine if it is a proxy, translating to 156.3
contracts per second. This efficiency enables Proxion to process
roughly 36million active contracts on the Ethereum network within
approximately 65 hours.

Moreover, Proxion’s binary search method for identifying logi-
cal contracts linked to a proxy contract significantly increases its ef-
ficiency. For each proxy contract, Proxionmakes 26 getStorageAt
API calls on average, which is a substantial improvement over the
naive method of querying all 15 million Ethereum blocks.

Proxion: Uncovering Hidden Proxy Smart Contracts for Finding Collision Vulnerabilities in Ethereum Conference’17, July 2017, Washington, DC, USA

In terms of function collision detection, Proxion averages 6.7
milliseconds to check if a contract pair has a collision issue. The
storage collision detection based on CRUSH averages a longer exe-
cution time of 1.3 minutes per contract pair. Proxion overcomes
this performance bottleneck by leveraging previously analyzed
contract information with the same bytecode. Indeed, by avoiding
re-testing identical contracts, Proxion requires only 48 days to test
the storage collision vulnerabilities of 36 million smart contracts.

6.2 Effectiveness

Datasets. We evaluate the effectiveness of Proxion in uncovering
more proxy and logic contracts (and subsequently, more collisions)
by comparing it with state-of-the-art tools, specifically USCHunt [5]
and CRUSH [41], utilizing their original datasets.

First, we use the Smart Contract Sanctuary dataset [37], which
is used to evaluate USCHunt originally. The Smart Contract Sanc-
tuary dataset contains 329,764 smart contracts that were deployed
between 2017 and 2022 and have their source code published on
EtherScan [11].

Second, we also use the dataset used by CRUSH [41] that includes
53,580,899 contracts deployed from July 2015 to April 2023. These
contracts may or may not have source code and past transactions.

Results. Proxion discovers more proxy contracts than both
USCHunt and CRUSHwhen testing against their respective datasets.

When running with the entire Smart Contract Sanctuary dataset,
we observe that Proxion experiences notably fewer failure cases
than USCHunt. Specifically, USCHunt encounters halt due to con-
tract compilation errors (e.g., unknown compiler versions) in about
30% of cases.4 Meanwhile, Proxion fails to emulate the execution,
for instance, due to insufficient values on the EVM stack in only
about 1.2% of contracts. In total, Proxion identifies 35,924 proxy
contracts, whereas USCHunt detects only 29,023, which is roughly
seven thousand fewer. As a result, Proxion detects 257 function

collisions that USCHunt has not reported.
Furthermore, CRUSH indicates that 26.6% of the examined smart

contracts, totaling 14,237,696, are identified as proxy contracts.
Among them, CRUSH also detects that 956 contract pairs are vul-
nerable to storage collisions with verified exploits. Proxion reports
about 1.2 million fewer proxy contracts than CRUSH in this dataset,
totaling 13,042,496 proxy smart contracts. This outcome occurs be-
cause CRUSH categorizes any contracts that involve DELEGATECALL
instructions as proxy contracts, including the one making library
calls. In contrast, Proxion does not consider this condition when
classifying proxy contracts (cf. Section 2.2). When excluding those
proxy smart contracts, Proxion uncovers more 1,667,905 proxy
contracts than CRUSH does, none of which have past transactions
available. Moreover, Proxion identifies an additional 1,480 contracts

with exploitable storage collisions that CRUSH did not report.

6.3 Accuracy

Methodology. We also compare the accuracy of Proxion with
USCHunt and CRUSH in detecting storage and function collisions.
For a fair comparison, we execute Proxion, USCHunt, and CRUSH
on the Smart Contract Sanctuary dataset [37]. This dataset includes

4We run USCHunt with the default compiler flags. There may be fewer errors if the
compiler versions are provided when compiling each contract.

TP FP TN FN Accuracy

Storage

collision

USCHunt 33 83 79 11 54.4%
CRUSH 26 76 86 18 54.4%
Proxion 27 28 134 17 78.2%

Function

collision

USCHunt 299 1 0 261 53.3%
Proxion 557 0 1 3 99.5%

Table 2: Proxion has higher accuracy than the state-of-the-

art tools in detecting both storage and function collisions.

only contracts with available source code, enabling us to manually
examine them and establish the ground truth data.

Specifically, within this dataset, USCHunt, CRUSH, and Prox-
ion identify 116, 102, and 55 storage collisions, respectively. Alto-
gether, the three tools detect 206 unique storage collisions, of which
we manually inspect the code. In the case of function collisions,
USCHunt identifies 300, while Proxion reports 557, resulting in
a total of 561 unique instances for manual verification. Here, it is
worth reminding that CRUSH does not detect function collisions.

Results. We report the collision detection accuracy in Table 2.
Regarding storage collisions, Proxion achieves an accuracy of 78.2%,
surpassing both USCHunt and CRUSH, which each achieve an accu-
racy of 54.4%. USCHunt and CRUSH generate more false positives
than Proxion, albeit for different reasons. Specifically, USCHunt
mistakenly identifies variables with different names in separate con-
tracts as collisions, often overlooking that one variable may serve
as storage padding and is not exploitable. Proxion and CRUSH
report a similar number of true positives (27 versus 26) thanks
to their shared approach to detecting storage collisions. However,
the higher accuracy of Proxion over CRUSH is attributed to its
effective identification of proxy smart contracts, wherein Proxion
precisely excludes library contracts.

Regarding function collisions, Proxion achieves an accuracy of

99.5%, with no false positives and only three false negatives. In con-
trast, USCHunt has a notable lower accuracy of 53.3%, with numer-
ous false negatives due to the underlying Slither fails to identify
proxy contracts. Here, Proxion also misses three function collisions
due to runtime errors when emulating the EVM execution.

7 PROXY SMART CONTRACTS’ LANDSCAPE

In this section, we present the comprehensive landscape of proxy
smart contracts in Ethereum, resulting from Proxion analyzing all
alive contracts and detecting their function and storage collisions.

7.1 Datasets

We utilize Proxion to examine all active smart contracts on the
Ethereum network, deployed from the genesis block up to block
18473542 (the final block of October 2023). We begin by querying
the addresses and deployment blocks of all contracts from Google
BigQuery [4]. Then, we retrieve their source code from EtherScan
if available [11], and bytecode and storage states from a locally
established Ethereum archive node [10]. For efficient analysis, we
assign the source code of a contract to all other contracts with
the same bytecode hash. As previously shown in Figure 2, among
roughly 64 million deployed smart contracts, 36 million are active

Conference’17, July 2017, Washington, DC, USA Cheng-Kang Chen, Wen-Yi Chu, Muoi Tran, Laurent Vanbever, and Hsu-Chun Hsiao

ERC-1167

ERC-1822

ERC-1967

ERC-2535

Figure 4: Accumulated number of pairs of proxy and logic

contracts identified by Proxion from 2015 to 2023. In the vast

majority of them, the proxy contracts only have bytecode

available.

as of October 2023. Proxion successfully analyzes 95.1% of those
active contracts without any errors from the EVM execution.

7.2 Findings

We present several findings regarding the growth of proxy contracts
over the years, the number of found collisions, and the trends in
their design patterns and deployments.

First, over half of the active contracts are proxy or logic contracts,

and the majority of proxy contracts do not publish their source code.

We show the number of active proxy contracts identified by Prox-
ion in Figure 4. As of October 2023, there are 19,599,317 proxy
contracts, which represent 54.2% of all contracts. Of these, approxi-
mately 2million are pairs of proxy and logic contracts with available
source codes for both, as indicated by the blue line. Conversely,
about 90% of proxy contracts lack available source codes, as shown
by the orange and red lines. It should also be noted that in total,
Proxion reveals approximately 1.5 million hidden proxy contracts
for which neither source code nor past transactions are available.

Furthermore, there has been a noticeable divergence in the
growth trends of proxy contracts before and after 2020. From 2015
to 2020, a total of only 2 million proxy contracts were deployed.
However, the deployment of proxy contracts surged after 2020; for
instance, 7.6 million proxy contracts were deployed in just the first
ten months of 2023. These figures closely track the historical adop-
tion of the proxy pattern in the development of Ethereum smart
contracts. Particularly, before the first proxy-related EIPs [20, 31]
in 2018, there was a clear demand for upgradeability and function-
ality cloning in smart contracts, demonstrated in about 1.3 million
contracts already exploiting delegate calls. The period between
2018 and 2020 appears to be the testing phase, in which several
EIPs [3, 30, 31, 38] were proposed to standardize the proxy pattern,
thus seeing a stable development in the number of proxy contracts.
Proxy contracts have become mainstream since 2020, especially
in 2022 and 2023, when more than 93% of contracts deployed are
proxy contracts.

Second, Proxion detects about 1.5 million function collisions, 98.7%

of which are duplicated contracts with the same code, and about

3 thousand exploitable storage collisions. We report the number

Year Function collisions Storage collisions

2017 24 0
2018 5,341 7
2019 16,136 37
2020 28,448 34
2021 705,801 725
2022 808,493 2,082
2023 2,541 137
Total 1,566,784 3,022

Table 3: Number of function and storage collisions detected

by Proxion. Notably, 1,545,722 (or 98.7%) proxy contracts

with function collisions are actually identical.

0 50000 100000
Indexes of unique contracts

101

103

105

107

N
um

be
r o

f d
up

lic
at

es
 (l

og
)

(a) Proxy contracts

0 10000 20000 30000 40000
Indexes of unique contracts

101

103

105

N
um

be
r o

f d
up

lic
at

es
 (l

og
)

(b) Logic contracts

Figure 5: Most contracts are duplicates: only 96, 420 and 38, 707
unique proxy and logic contracts, respectively. (5a): three

proxy contracts are duplicated more than 1 million times.

(5b): two logic contracts have the same bytecode with more

than ten thousand other contracts.

of function and storage collisions found by Proxion in Table 3.
Specifically, starting from the 19.5 million pairs of proxy and logic
contracts, Proxion detects a total of 1, 566, 784 pairs having func-
tion collisions and 3, 022 pairs having storage collisions. Notably,
98.7% of the detected function collisions come from many proxy
contracts duplicated from the OwnableDelegateProxy5 contract. In
those cases, function collisions are caused by the proxyType(),
implementation(), upgradeabilityOwner() functions appear-
ing in both proxy and logic contracts, possibly due to contract
inheritance [53].

Regarding storage collisions, we identified 91 instances out of
3,022 where both proxy and logic contracts have their source code
available. This availability enables us to study their owners and the
potential impacts of exploiting them. Specifically, we pinpointed
11 entities with smart contracts vulnerable to storage collisions,
including Ape Finance, Compound, Convex, Curve, GolduckDAO,
LeverFi, Poly, Polyhedra Network, Polymath, Tokeny, and Zora. As
of this writing, these entities manage stakes totaling 19 billion USD.
However, it is important to acknowledge that they may manage
stakes in other contracts that are not prone to such vulnerabilities.

Third, we find the distributions of bytecode uniqueness are heav-

ily skewed, with 42% of proxy contracts duplicating from just three

popular contracts. We highlight the number of unique proxy and
5https://etherscan.io/address/0x0a08e6058eaaa847a1adb55b0a69b8469ea5a5b3

https://etherscan.io/address/0x0a08e6058eaaa847a1adb55b0a69b8469ea5a5b3

Proxion: Uncovering Hidden Proxy Smart Contracts for Finding Collision Vulnerabilities in Ethereum Conference’17, July 2017, Washington, DC, USA

Contracts Ratio

EIP-1167 [31] 17, 453, 264 89.05%
EIP-1822 [3] 22, 789 0.12%
EIP-1967 [38] 196, 688 1.00%
Others 1, 926, 576 9.83%

Table 4: The number of proxy contracts following certain

design standards. The vast majority of proxy contracts follow

the minimal design (EIP-1167). Proxionmisses only a few

hundred of the diamond proxy contracts (EIP-2535).

logic contracts in Figure 5. Interestingly, while Proxion identi-
fies approximately 19.6 million proxy contracts and 70 thousand
associated logic contracts, most of them are actually duplicates
(i.e., having the same compiled bytecode) deployed at different
addresses. Particularly, Figure 5 reports only 96, 420 and 38, 707
unique proxy and logic contracts, respectively. We see that the
distributions of bytecode uniqueness are heavily skewed, in which
a small number of contracts are duplicated significantly more than
others. To be more specific, the three most popular proxy contracts
have more than a million of duplicated contracts, and they are
CoinTool_App

6, XENTorrent7, and OwnableDelegateProxy contracts.
We also notice that while most logic contracts are not duplicated
frequently, there are two standout logic contracts8,9 having more
than 10, 000 duplicates. We conjecture that these contracts have
source code, which renders cloning them uncomplicated and re-
lates to the popularity of the non-fungible token marketplaces in
recent years (e.g., OwnableDelegateProxy is a core component of the
popular Wyvern protocol [51]). It is worth noting that all the dupli-
cates of the popular proxy contracts above associate with the same
logic contracts. For example, the CoinTool_App logic contract10 is
referenced by almost 3.5 million proxy contracts that are dupli-
cates of the CoinTool_App proxy contract. These findings indicate
a widespread contract cloning practice that preserves the cloned
contract’s functionalities. It may be, however, not ideal from the
decentralization perspective, as potential bugs or vulnerabilities of
the cloned contracts are also propagated, as noted in the previous
paragraph or in existing work [52].

Fourth, the minimal proxy design dominates the standard proxy

contracts while a non-negligible portion of non-standard proxy con-

tracts exists. We present the distribution of proxy contracts’ de-
sign patterns in Table 4. Notably, most of them (89.05%) adhere to
the minimal design standard [31], which includes only the del-
egate call in the fallback function and a hard-coded logic con-
tract address in the bytecode. These minimal proxy contracts are
not vulnerable to function and storage collisions due to the ab-
sence of variable and function declarations. We further categorize
proxy contracts into other standards based on the locations stor-
ing their logic contracts’ addresses. In particular, 22, 789 contracts
are categorized under the EIP-1822 standard (Universal Upgrade-
able Proxy Standard) as they utilize a specific storage slot derived

6https://etherscan.io/address/0x95a3946104132973b00ec0a2f00f7cc2b67e751f
7https://etherscan.io/address/0x4e488a5367daf86cfc71ea3b52ff72ca937efcf8
8https://etherscan.io/address/0xf17b1a1f68e1ddaa2e3285437b96ea28af2a2dc0
9https://etherscan.io/address/0xa471cd47769c3a788ad9c7b3d8350f195bf672bd
10https://etherscan.io/address/0x0de8bf93da2f7eecb3d9169422413a9bef4ef628

0 20 40 60 80
Number of upgrades

100

101

102

103

104

105

N
um

be
r o

f p
ro

xy
 c

on
tra

ct
s (

lo
g)

Figure 6: Number of upgrades for logic contracts in log scale.

Most proxy contracts (99.7%) have not upgraded to a newer

version of logic contracts.

from the Keccak-256("PROXIABLE") hash. Similarly, 196, 688 con-
tracts follow the EIP-1967 standard because they store logic con-
tract addresses in a slot derived from the Keccak-256 hash of
("eip1967.proxy.implementation"). We also note that there are
9.83% of the proxy contracts storing their logic contract’s addresses
in the storage without conforming to any known design patterns.

Last, we find that most proxy contracts have not upgraded to a

newer version of logic contracts. We show the number of contract
upgrade events in which the logic contract’s address is updated
in Figure 6. We find that the number of upgraded smart contracts
is insignificant, e.g., only 51, 925 proxy contracts have upgraded
their logic implementations throughout history. The majority of
these contracts also upgrade only a few times (i.e., having only
1.32 associated logic contracts on average). We also observe that
upgrade events are infrequent; only 68, 804 upgrading events ever
occurred, meaning, on average, an upgrade happens only once
per 200 Ethereum blocks. From the security point of view, such
an infrequent upgrade may render proxy contracts less prone to
storage collisions, which often arise during contract upgrades.

8 DISCUSSION

In this section, we discuss several key points. We first describe the
limitations of Proxion and explain why they do not undermine
Proxion’s contributions (§8.1). Based on the discussed limitations,
we outline a few potential follow-up works for Proxion (§8.2). We
finally acknowledge the ethical considerations in this paper (§8.3).

8.1 Limitations

When analyzing proxy contracts, Proxion misses the contracts
following the Diamonds, Multi-Facet Proxy design pattern [30], in
which only the function signatures registered by the contract owner
can trigger the delegate calls in the fallback function. Unfortunately,
Proxion can currently only send randomly generated call data
during EVM emulation and, thus, cannot detect these diamond
contracts.

Another limitation of the system is the occurrence of runtime
errors, which are relatively low (e.g., at 4.9%) during the emulation
of EVM execution of smart contracts (cf. Section 7.1). Additionally,

https://etherscan.io/address/0x95a3946104132973b00ec0a2f00f7cc2b67e751f
https://etherscan.io/address/0x4e488a5367daf86cfc71ea3b52ff72ca937efcf8
https://etherscan.io/address/0xf17b1a1f68e1ddaa2e3285437b96ea28af2a2dc0
https://etherscan.io/address/0xa471cd47769c3a788ad9c7b3d8350f195bf672bd
https://etherscan.io/address/0x0de8bf93da2f7eecb3d9169422413a9bef4ef628

Conference’17, July 2017, Washington, DC, USA Cheng-Kang Chen, Wen-Yi Chu, Muoi Tran, Laurent Vanbever, and Hsu-Chun Hsiao

EVM emulation may inevitably yield results that differ from actual
contract execution, although the extent of these discrepancies is
not known.

8.2 Future Work

Future work for Proxion includes identifying proxy contracts that
follow the diamond design pattern [30]. A potential solution in-
volves extracting all registered functions from past transactions
(similar to CRUSH [41]) and utilizing them to generate call data.
To detect contracts with source code available, Proxion may em-
ploy a static analysis approach like USCHunt [5], combining with
the information of the slot storing logic contract’s address (i.e.,
Keccak-256("diamond.standard.diamond.storage")).

Proxion can also be extended to analyze proxy smart contracts
beyond Ethereum blockchain. Similar to USCHunt [5], Proxion
may apply to several other blockchains, such as Arbitrum, Avalanche,
Binance Smart Chain, Celo, Fantom, Optimism, and Polygon.

8.3 Ethical Considerations

This paper does not raise any ethical issues. Our evaluation uses
the already available datasets. Our interaction with the Ethereum
production network is only to retrieve real-world data and does
not affect any other parties.

9 RELATEDWORK

We consider related work that studies the same target of proxy
smart contracts (§9.1), discusses contract upgradability (§9.2), or
performs analysis on smart contracts (§9.3).

9.1 Finding Collisions in Proxy Smart Contracts

Several tools aim to detect proxy smart contracts and their collision
issues; see Table 1 for an overview.

Slither, a static analysis framework, examines the source code
of contracts to determine if they are proxy contracts [13]. How-
ever, Slither’s proxy detection relies on keyword searches, such
as "proxy" or "delegatecall," which may lead to a high rate of false
positives. Additionally, in contrast to Proxion, Slither does not
automatically identify associated logic contracts for a given proxy
contract.

Etherscan is a widely recognized web-based explorer for the
Ethereum blockchain, featuring an integrated proxy contract verifi-
cation tool [11]. This tool identifies contracts with the DELEGATECALL
opcode as proxy contracts, a result that Etherscan admits may lead
to numerous false positives [12]. Proxion applies a similar initial
filtering process for proxy contracts and then conducts dynamic
analysis, resulting in more precise detection.

USCHunt [5] employs static analysis based on Slither to de-
tect proxy contracts with published source code, and their secu-
rity vulnerabilities, such as collisions, on eight blockchains, in-
cluding Ethereum. Proxion focuses on improving the detection of
proxy contracts and collision issues, specifically on the Ethereum
blockchain, which has shown to be more efficient, inclusive, and
precise than USCHunt throughout this paper.

Salehi et al. [42] studied the ownership of upgradability in smart
contracts, i.e., finding out who can upgrade the proxy contracts. Sim-
ilar to Proxion, this work also performs dynamic analysis on smart

contracts’ bytecode, thus covering more contracts than USCHunt.
Unlike Proxion, however, the analysis here involves replaying past
transactions to the contracts under tests, thus limiting the effective
analysis to only contracts with many transactions.

CRUSH is a newly developed automation tool that detects storage
collisions and generates verified exploits [41]. The CRUSH engine is
also employed by Proxion to identify storage collisions, particularly
for proxy contracts without source code. Like Salehi et al., CRUSH
depends on historical transactions to locate proxy contracts, thus
missing out on millions of hidden contracts. Additionally, unlike
Proxion, CRUSH is not equipped to detect function collisions.

9.2 Upgradeability in Smart Contracts

The upgradeability in smart contracts has been discussed exten-
sively in several EIPs [3, 30, 31, 38], technical blog posts [34, 36],
and numerous studies [15, 23, 40, 53]. These works focus on de-
signing new proxy patterns to enable upgrading smart contracts at
scale or studying the status quo of upgradable contracts. Our work
also studies upgradable contracts in Ethereum, which is a subset of
proxy smart contracts. We further reveal that upgrading events are
actually rare, and functionality cloning is a more popular usage of
proxy contracts. Our work, thus, provides an additional discussion
to the existing literature on upgradeability in smart contracts.

9.3 Smart Contracts Analyzers

The security of smart contracts is a well-studied research topic,
as smart contracts are known to have multiple vulnerabilities [1].
Many smart contract analyzers have been proposed in recent years
to detect these vulnerabilities. Commonly, they can be categorized
into static analyzers and dynamic analyzers based on their over-
all approach. Particularly, static analyzers detect smart contract
vulnerabilities by inspecting their source code or bytecode, using
techniques such as information flow analysis (e.g., Slither [13], Mad-
Max [17]) or symbolic execution (e.g., Oyente [28], MantiCore [29],
Securify [48], teEther [25], Mythril [9], Zeus [22], Osiris [45]). On
the other hand, dynamic analyzers execute the test smart contracts
and observe the behaviors of vulnerable ones, using fuzzing (e.g.,
ReGuard [27], ContractFuzzer [21], Confuzzius [44], sFuzz [32], Har-
vey [50]) or validation (e.g., MAIAN [33], Sereum [39], SODA [7],
ESCORT [43]). We refer to a recent survey by Kushwaha et al. [26]
for a more comprehensive review of such existing analysis tools.
This paper proposes Proxion, a new hybrid contract analyzer focus-
ing specifically on the collision issues of Ethereum smart contracts.

10 CONCLUSION

While the proxy design pattern facilitates upgrading smart con-
tracts in Ethereum, it also introduces potential security risks due
to function and storage collisions. Previous efforts to detect these
collisions have been inadequate, mainly due to the limited cover-
age of contracts under test, especially for the hidden ones without
source code or transaction history. To bridge this gap, we have
created Proxion, a novel automated tool that efficiently, effectively,
and accurately identifies hidden proxy contracts and their associ-
ated collision vulnerabilities. Utilizing Proxion, we analyzed all
Ethereum smart contracts and discovered that half are associated

Proxion: Uncovering Hidden Proxy Smart Contracts for Finding Collision Vulnerabilities in Ethereum Conference’17, July 2017, Washington, DC, USA

with the proxy pattern, and millions of them are vulnerable to col-
lisions. Observing proxy smart contracts’ evolution suggests an
increased adoption of the proxy pattern in the coming years. We
thus believe our work significantly contributes to securing proxy
contracts in this anticipated future.

REFERENCES

[1] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks
on Ethereum smart contracts (sok). In ETAPS.

[2] Audius. 2022. How Attackers Stole Around $1.1M Worth of Tokens From Decen-
tralized Music Project Audius. https://blog.audius.co/article/audius-governance-
takeover-post-mortem-7-23-22.

[3] Gabriel Barros and Patrick Gallagher. 2019. ERC-1822: Universal Upgradeable
Proxy Standard (UUPS). https://eips.ethereum.org/EIPS/eip-1822.

[4] Google BigQuery. 2023. Ethereum Cryptocurrency. https://console.cloud.google.
com/marketplace/product/ethereum/crypto-ethereum-blockchain.

[5] William E Bodell III, Sajad Meisami, and Yue Duan. 2023. Proxy hunting: Un-
derstanding and characterizing proxy-based upgradeable smart contracts in
blockchains. In USENIX Security.

[6] Vitalik Buterin. 2024. Viper. https://ethereum-viper.readthedocs.io/en/latest/.
[7] Ting Chen, Rong Cao, Ting Li, Xiapu Luo, Guofei Gu, Yufei Zhang, Zhou Liao,

Hang Zhu, Gang Chen, and ZheyuanHe. 2020. SODA: AGeneric Online Detection
Framework for Smart Contracts.. In Proc. NDSS.

[8] Compound. 2023. Compound. https://compound.finance/.
[9] Consensys. 2023. Mythril. https://github.com/ConsenSys/mythril.
[10] Ethereum. 2023. Ethereum Archive Node. https://ethereum.org/en/developers/

docs/nodes-and-clients/archive-nodes.
[11] EtherScan. 2023. EtherScan. https://etherscan.io/.
[12] EtherScan. 2023. Proxy Contracts. https://info.etherscan.com/what-is-proxy-

contract/.
[13] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis

framework for smart contracts. In IEEE WETSEB.
[14] Ethereum Foundation. 2024. The Solidity Contract-Oriented Programming Lan-

guage. https://github.com/ethereum/solidity.
[15] Michael Fröwis and Rainer Böhme. 2022. Not all code are create2 equal. InWTSC.
[16] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019. Giga-

horse: thorough, declarative decompilation of smart contracts. In Proc. IEEE/ACM

ICSE.
[17] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and

Yannis Smaragdakis. 2018. Madmax: Surviving out-of-gas conditions in Ethereum
smart contracts. Proc. OOPSLA (2018).

[18] Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis. 2022.
Elipmoc: Advanced decompilation of Ethereum smart contracts. In PACMPL.

[19] OpenZeppelin Inc. 2020. Safemath. https://github.com/OpenZeppelin/
openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol

[20] Jorge Izquierdo and Manuel Araoz. 2018. ERC-897: DelegateProxy. https://eips.
ethereum.org/EIPS/eip-897.

[21] Bo Jiang, Ye Liu, and Wing Kwong Chan. 2018. Contractfuzzer: Fuzzing smart
contracts for vulnerability detection. In Proc. ACM/IEEE ASE.

[22] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus:
analyzing safety of smart contracts.. In Proc. NDSS.

[23] Philipp Klinger, Long Nguyen, and Freimut Bodendorf. 2020. Upgradeability con-
cept for collaborative blockchain-based business process execution framework.
In Proc. IEEE ICBC.

[24] Tomasz Kolinko and Palkeo. 2024. Panoramix - EVM decompiler. https://github.
com/palkeo/panoramix.

[25] Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at Ethereum to
automatically exploit smart contracts. In Proc. USENIX Security.

[26] Satpal Singh Kushwaha, Sandeep Joshi, Dilbag Singh, Manjit Kaur, and Heung-No
Lee. 2022. Ethereum smart contract analysis tools: A systematic review. IEEE
Access (2022).

[27] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe. 2018.
Reguard: finding reentrancy bugs in smart contracts. In Proc. ACM ICSE.

[28] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.
Making smart contracts smarter. In Proc. CCS.

[29] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A user-
friendly symbolic execution framework for binaries and smart contracts. In Proc.

IEEE/ACM ASE.
[30] Nick Mudge. 2020. ERC-2535: Diamonds, Multi-Facet Proxy. https://eips.

ethereum.org/EIPS/eip-2535.
[31] Peter Murray, Nate Welch, and Joe Messerman. 2018. EIP-1167: Minimal Proxy

Contract. https://eips.ethereum.org/EIPS/eip-1167.
[32] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.

sfuzz: An efficient adaptive fuzzer for solidity smart contracts. In Proc. ACM/IEEE

CSE.
[33] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.

2018. Finding the greedy, prodigal, and suicidal contracts at scale. In Proc. ACSAC.
[34] Trail of Bits. 2018. Contract upgrade anti-patterns. https://blog.trailofbits.com/

2018/09/05/contract-upgrade-anti-patterns/.
[35] OpenSea. 2023. OpenSea. https://opensea.io/.
[36] OpenZeppelin. 2023. Proxy Upgrade Pattern. https://docs.openzeppelin.com/

upgrades-plugins/1.x/proxies.
[37] Martin Ortner and Shayan Eskandari. 2023. Smart Contract Sanctuary. https:

//github.com/tintinweb/smart-contract-sanctuary.
[38] Santiago Palladino, Francisco Giordano, and Hadrien Croubois. 2019. ERC-1967:

Proxy Storage Slots. https://eips.ethereum.org/EIPS/eip-1967.
[39] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2019. Sereum:

Protecting existing smart contracts against re-entrancy attacks. In Proc. NDSS.
[40] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2021. EVMPatch:

Timely and automated patching of Ethereum smart contracts. In Proc. USENIX

Security.
[41] Nicola Ruaro, Fabio Gritti, Robert McLaughlin, Ilya Grishchenko, Christopher

Kruegel, and Giovanni Vigna. 2024. Not your Type! Detecting Storage Collision
Vulnerabilities in Ethereum Smart Contracts. In Proc. NDSS.

[42] Mehdi Salehi, Jeremy Clark, and Mohammad Mannan. 2022. Not so immutable:
Upgradeability of smart contracts on Ethereum. In WTSC.

[43] Christoph Sendner, Huili Chen, Hossein Fereidooni, Lukas Petzi, Jan König, Jasper
Stang, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Farinaz Koushanfar.
2023. Smarter Contracts: Detecting Vulnerabilities in Smart Contracts with Deep
Transfer Learning.. In Proc. NDSS.

[44] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State.
2021. Confuzzius: A data dependency-aware hybrid fuzzer for smart contracts.
In Proc. IEEE EuroS&P.

[45] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting
for integer bugs in Ethereum smart contracts. In Proc. ACSAC.

[46] Christof Ferreira Torres, Mathis Steichen, and Radu State. 2019. The art of the
scam: Demystifying honeypots in Ethereum smart contracts. In USENIX Security.

[47] Mike Truppa. 2022. Arbitrum announces 400 ETH bug bounty payout.
[48] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian

Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart
contracts. In Proc. CCS.

[49] Patrick Ventuzelo. 2023. Octopus: Security Analysis tool for WebAssembly mod-
ule and Blockchain Smart Contracts. https://github.com/FuzzingLabs/octopus.

[50] Valentin Wüstholz and Maria Christakis. 2020. Harvey: A greybox fuzzer for
smart contracts. In Proc. ACM FSE.

[51] Wyvern. 2023. Wyvern Protocol. https://wyvernprotocol.com/.
[52] Kailun Yan, Jilian Zhang, Xiangyu Liu,Wenrui Diao, and Shanqing Guo. 2023. Bad

Apples: Understanding the Centralized Security Risks in Decentralized Ecosys-
tems. In ACM Web Conference.

[53] Gavin Zheng, Longxiang Gao, Liqun Huang, Jian Guan, Gavin Zheng, Longxiang
Gao, Liqun Huang, and Jian Guan. 2021. Upgradable contract. Ethereum Smart

Contract Development in Solidity (2021).

https://blog.audius.co/article/audius-governance-takeover-post-mortem-7-23-22
https://blog.audius.co/article/audius-governance-takeover-post-mortem-7-23-22
https://eips.ethereum.org/EIPS/eip-1822
https://console.cloud.google.com/marketplace/product/ethereum/crypto-ethereum-blockchain
https://console.cloud.google.com/marketplace/product/ethereum/crypto-ethereum-blockchain
https://ethereum-viper.readthedocs.io/en/latest/
https://compound.finance/
https://github.com/ConsenSys/mythril
https://ethereum.org/en/developers/docs/nodes-and-clients/archive-nodes
https://ethereum.org/en/developers/docs/nodes-and-clients/archive-nodes
https://etherscan.io/
https://info.etherscan.com/what-is-proxy-contract/
https://info.etherscan.com/what-is-proxy-contract/
https://github.com/ethereum/solidity
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol
https://eips.ethereum.org/EIPS/eip-897
https://eips.ethereum.org/EIPS/eip-897
https://github.com/palkeo/panoramix
https://github.com/palkeo/panoramix
https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-1167
https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/
https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/
https://opensea.io/
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://github.com/tintinweb/smart-contract-sanctuary
https://github.com/tintinweb/smart-contract-sanctuary
https://eips.ethereum.org/EIPS/eip-1967
https://github.com/FuzzingLabs/octopus
https://wyvernprotocol.com/

	Abstract
	1 Introduction
	2 Background
	2.1 Ethereum Blockchain
	2.2 Proxy Smart Contracts in Ethereum
	2.3 Collision Vulnerabilities

	3 Proxion Overview
	3.1 Motivation
	3.2 Solutions

	4 Uncovering Proxy Smart Contracts
	4.1 Disassembling Smart Contracts
	4.2 Emulating EVM Execution
	4.3 Finding associated logic contracts

	5 Checking For Collisions
	5.1 Function collisions
	5.2 Storage collisions

	6 Evaluation
	6.1 Performance
	6.2 Effectiveness
	6.3 Accuracy

	7 Proxy Smart Contracts' Landscape
	7.1 Datasets
	7.2 Findings

	8 Discussion
	8.1 Limitations
	8.2 Future Work
	8.3 Ethical Considerations

	9 Related Work
	9.1 Finding Collisions in Proxy Smart Contracts
	9.2 Upgradeability in Smart Contracts
	9.3 Smart Contracts Analyzers

	10 Conclusion
	References

