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Abstract—The proxy design pattern allows Ethereum smart
contracts to be simultaneously immutable and upgradeable,
in which an original contract is split into a proxy contract
containing the data storage and a logic contract containing
the implementation logic. This architecture is known to have
security issues, namely function collisions and storage collisions
between the proxy and logic contracts, and has been exploited
in real-world incidents to steal users’ millions of dollars worth
of digital assets. In response to this concern, several previous
works have sought to identify proxy contracts in Ethereum and
detect their collisions. However, they all fell short due to their
limited coverage, often restricting analysis to only contracts with
available source code or past transactions.

To bridge this gap, we present PROXION, an automated cross-
contract analyzer that identifies all proxy smart contracts and
their collisions in Ethereum. What sets PROXION apart is its
ability to analyze hidden smart contracts that lack both source
code and past transactions. Equipped with various techniques to
enhance efficiency and accuracy, PROXION outperforms the state-
of-the-art tools, notably identifying millions more proxy contracts
and thousands of unreported collisions. We apply PROXION
to analyze over 36 million alive contracts from 2015 to 2023,
revealing that 54.2% of them are proxy contracts, and about 1.5
million contracts exhibit at least one collision issue.

I. INTRODUCTION

Ethereum is a popular blockchain that enables decentralized
applications on the Internet, such as decentralized finance,
voting systems, and non-fungible token marketplaces, through
the creation and execution of smart contracts. These smart
contracts are deployed onto the Ethereum blockchain network
(i.e., replicated across all participating nodes), facilitating
autonomous and trustless execution of the contract’s functions.
Smart contracts are immutable — once deployed, they cannot
be changed or tampered with. While immutability ensures the
integrity and reliability of smart contract execution, it poses
challenges for updating smart contracts (e.g., to fix bugs or
introduce new features) since existing states (e.g., stored data,
balances) must be migrated to new smart contracts.

To enable smart contracts’ upgradeability while still adher-
ing to their immutability, the proxy design pattern has recently
emerged in several Ethereum Improvement Proposals (EIPs)
(e.g., [7], [8], [9], [10], [11]) and in major blockchain-based
companies [12], [13]. Under this pattern, an original smart
contract is decoupled into two contracts: a proxy contract that
contains the data storage and a logic contract that contains the
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Fig. 1: The accumulated number of alive Ethereum smart
contracts till 31 October 2023. Prior works only cover about
18% of smart contracts with source code (blue and orange) [5]
or 53% of smart contracts with past transactions (orange and
green) [6], while PROXION also applies to the hidden contracts
without source code and past transactions (red).

implementation logic. The two contracts interact via delegate
calls that allow the logic contract’s functions to be executed
in the context of the proxy contract’s storage. To update the
implementation of smart contracts under this scheme, devel-
opers simply deploy a new logic contract and change the logic
contract’s address stored in the proxy contract accordingly.

The emerging proxy architecture also comes with new secu-
rity issues, of which function collisions and storage collisions
are the most notable ones. Particularly, smart contract devel-
opers may deliberately or accidentally create conflicts in the
storage layouts or function identifiers between the proxy and
logic contracts. When users execute these colliding contracts,
such conflicts can lead to stored data and functions being
incorrectly accessed. Worse, they can also be exploited by
sophisticated adversaries to steal assets from the victims who
wrongfully execute malicious functions or data. For example,
attackers can create malicious contracts with function colli-
sions that disguise their scamming functionalities, often known
as honeypot contracts [14]. Outside of the academic realm,
adversaries have leveraged storage collisions to overwrite the
owner of Audius contracts, stealing more than a million worth
of tokens in the process [15]. Also, a bounty hunter discovered
storage collisions in the contract connecting the Ethereum and
Arbitrum blockchains, which could potentially be exploited to
compromise funds exceeding 250 million dollars [16].



Smart contract coverage Collision coverage
With source code Without source code With source code Without source code

With tx Without tx With tx Without tx Function Storage Function Storage
EtherScan [1] ✓ ✓

Slither [2] ✓ ✓ ✓ ✓
Salehi et al. [3] ✓ ✓
USCDetector [4] ✓ ✓

USCHunt [5] ✓ ✓ ✓ ✓
CRUSH [6] ✓ ✓ ✓ ✓

Proxion (this work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE I: PROXION uncovers more proxy smart contracts than previous works, especially including the hidden contracts that
do not have source code and past transactions (acronym: tx) available. As a result, PROXION also discovers more collision
vulnerabilities, notably function collisions in contracts lacking source code. PROXION’s novel coverage is highlighted in green.

More worryingly, the current best practices of proxy smart
contracts fall short for both users and developers. Specifically,
users must manually review the source code of both proxy
and logic contracts before any interaction, such as sending
a transaction. Should a proxy contract lack available source
code, it is advised that users avoid engaging with it to prevent
potential misuse despite possibly missing out on legitimate
services. Developers of proxy smart contracts are recently
equipped with the new Transparent Upgradeable Proxy design
proposed by OpenZeppelin [17] that minimizes the impacts of
function collisions. However, adopting a new proxy design is
time-consuming, while existing proxy contracts may already
contain vulnerabilities due to human errors.

To facilitate the safety assessment of proxy smart contracts,
various systems have been recently introduced to automatically
identify collision vulnerabilities [2], [5], [6]. At the high level,
these systems typically involve two main phases: (1) identi-
fying proxy contracts and their corresponding logic contracts
from historical data, and (2) examining each contract pair to
determine if there are any colliding functions or storage slots.
While the approach seems straightforward, several challenges
remain, leaving a non-negligible number of proxy smart con-
tracts unchecked and potentially vulnerable to exploitation.

First, the source code of smart contracts may be unavailable
because the public blockchain contains only their runtime
bytecode. This bytecode is not human-readable, making the
analysis (e.g., checking for delegate calls in the fallback
function) difficult. Indeed, existing tools [5], [2] can only
analyze smart contracts when their source code is published
(e.g., on EtherScan [1]). Figure 1 shows the accumulated
number of alive1 Ethereum smart contracts from 2015 to 2023.
Unfortunately, we notice that smart contracts with source code
available only account for about 18% of all contracts.

Second, uncovering proxy smart contracts through their
historical interactions with other smart contracts may also
not always be feasible. Specifically, existing tools analyze
all blockchain transactions to detect DELEGATECALL in-
structions, identifying contracts involved as proxy and logic
contract pairs [6], [3]. This approach applies to all smart
contracts, yet it can result in numerous false positives, as
common library calls may also contain such instructions.

1We exclude the destroyed smart contracts.

Furthermore, many smart contracts have never interacted with
others, such as those freshly deployed on the blockchain. In
fact, our data in Figure 1 indicates that only about 53% of
the active smart contracts have had interactions with other
contracts and are therefore checkable by these tools.

Failing to cover all smart contracts for proxy detection can
lead to undesirable outcomes. A clear consequence is that the
scope of current tools in identifying collision problems is also
limited. Indeed, no prior research has successfully detected
function collisions using only the bytecode of proxy and
logic contracts. For example, USCHunt [5] and Slither [2] are
restricted to detecting collisions in contracts with accessible
source code, whereas CRUSH [6] is tailored to detect only
storage collisions. Worse, adversaries might deploy malicious
contracts (e.g., honeypot contracts [14]) and hide them from
these analysis tools by not publishing their source code or
interacting with other contracts. These shortcomings highlight
the necessity for a novel, effective assessment method for all
contracts, thereby enabling thorough collision checks.

To that end, we introduce PROXION, an automated cross-
contract analyzer that aims to uncover all proxy smart con-
tracts in Ethereum. In essence, PROXION emulates the exe-
cution of the contract under test with carefully crafted inputs
that trigger distinct behaviors of proxy contracts (e.g., making
delegate calls to other contracts). Therefore, PROXION does
not require the contract’s source code or its past transactions
like prior works. Table I compares PROXION with related
works, highlighting its novel ability to cover hidden contracts
lacking source code and historical transactions, as well as
function collisions when contract source codes are unavailable.

In addition to providing broader coverage of smart contracts
and collisions compared to previous studies, PROXION is also
efficient, effective, and accurate. Specifically, PROXION can
analyze all 36 million active smart contracts in just 65 hours,
processing an average of about 150 contracts per second.
Moreover, PROXION has identified thousands of vulnerable
contracts with unreported collision issues, affecting at least
11 entities in control of a total of 8 billion USD in stakes.
In terms of accuracy, PROXION achieves 78.2% in detecting
storage collisions and 99.5% in detecting function collisions,
surpassing the performance of state-of-the-art tools. Last but
not least, we capture and present several insightful trends in
developing proxy contracts over the years.



II. BACKGROUND

In this section, we provide the background by introducing
the Ethereum blockchain (§II-A), reviewing proxy smart con-
tracts (§II-B), and describing their collision issues (§II-C).

A. Ethereum Blockchain

Ethereum operates atop a peer-to-peer network of nodes that
collaboratively maintain a global blockchain state consisting of
users’ accounts and balances. A node consists of an execution
client responsible for propagating and executing transactions
within the Ethereum Virtual Machine (EVM). The transactions
either deploy smart contracts onto the network or execute
functions within the deployed contracts. Here, deploying a
smart contract means compiling a program written in Solid-
ity [18] or Viper [19] into EVM bytecode and creating a new
contract account containing the compiled bytecode and its data
storage. Also, executing a contract’s functions means users or
other contracts send transactions containing input data that
meets predefined conditions, namely call data, to its account.
Specifically, the call data encodes a series of bytes, including
a function selector (i.e., signature) followed by the function’s
arguments. Note that the function selector is the first 4 bytes of
the Keccak-256 hash (e.g., 0xdf4a3106) of the function’s
prototype string (e.g., free_ether_withdrawal()). If
the selector matches no function in the contract bytecode and
a fallback function exists, the EVMs will execute it instead.

B. Proxy Smart Contracts in Ethereum

Once deployed, smart contracts are immutable, and yet
they require updates to introduce new features, correct errors,
or address security flaws just like conventional programs.
Naively migrating a contract’s states and balances into a new
account for all updates is not scale, as affected users need to
update their workflows to use a new contract address. A more
favorable solution to smart contract upgradability is splitting
it into a proxy contract storing the data and a logic contract
storing the implementation logic [7], [8], [9], [10], [11].

We illustrate the essence of proxy smart contracts in Fig-
ure 2. The proxy smart contract facilitates a delegate call to
a function in the logic contract. Here, the delegate call allows
the execution of the logic contract’s function in the context
of the proxy contract’s storage. In particular, the user encodes
the call data for this function in a transaction sent to the proxy
contract. This call data contains a function selector that does
not match any existing proxy contract functions, allowing it
to be passed to the proxy contract’s fallback function. As a
result, the delegate call in the fallback function is triggered,
executing the logic contract’s functions while accessing the
proxy contract’s storage. To enable upgradeability, the proxy
contract stores the logic contract’s address, usually in one of its
storage slots, see logic variable in Figure 2. When upgrading
to a new logic contract (e.g., v2 in Figure 2), the user only
needs to replace the logic contract’s address stored in the proxy
contract (e.g., using a setter call).

Focusing on contracts with upgradability, we exclude li-
brary contracts with reusable code for general use, such as

call data

contract Proxy {

   address private logic;

   [...]

   

   function impl_() {

      [...]

   }

   fallback(bytes calldata input) {

      [...]

      logic.delegatecall(input)

   }

User

Proxy contract

Logic contract v2Logic contract v1

Fig. 2: An example of proxy and logic smart contracts. The
proxy contract’s delegate call forwards the call data to the
upgraded logic contract.

SafeMath [20], from the definition of logic smart contracts.
Indeed, when a smart contract calls such libraries, delegate
calls occur at different code locations, not in its fallback
function, preventing users from choosing whether to execute
the library contract’s functions. Moreover, all EIPs concerning
the proxy smart contract pattern exclude library contracts from
their scope. In short, we consider a contract to be a proxy
contract if it uses the delegate call in its fallback function
to forward the call data it has received to another contract,
and any contract receiving forwarded call data from a proxy
contract to be a logic contract.

C. Collision Vulnerabilities

Separating data storage and implementation logic in proxy
architecture leads to various issues, notably function and
storage collisions. These collisions have posed significant risks
to proxy and logic contracts, potentially enabling attacks that
aim to steal stored assets.

Function collision vulnerability. A function collision oc-
curs when a proxy contract’s function has the same signature
as a logic contract’s function. When it happens, users cannot
execute the collided functions in the logic contract because the
call data is not passed to the fallback function in the proxy
contract. The most obvious scenario of function collisions is
when a proxy contract’s function has the same name as a
logic contract’s function. The two collided functions may also
differ if they share the same first 4 bytes in their hashes.
Listing 1 illustrates an example of function collisions, in
which two functions impl_LUsXCWD2AKCc() (line 11) and
free_ether_withdrawal() (line 27) have the same 4-
byte signature of 0xdf4a3106. As a result, when the user
encodes this signature in the call data, the proxy contract
will execute impl_LUsXCWD2AKCc() instead of calling the
logic contract’s free_ether_withdrawal().

Potential exploits. Malicious contract developers can exploit
function collisions to trick users into executing honeypot
contracts [14]. In such attacks, the adversary creates a logic
contract with an enticing function, such as transferring cryp-
tocurrencies to the function caller, which actually collides with
a proxy contract’s function that steals funds from the caller.



1 contract Proxy {
2 address private owner;
3 address private logic; // Logic contract’s address
4 address constant USDT = 0xdAC17F958D2ee523a2206206994597...;
5
6 constructor(address impl) {
7 owner = msg.sender;
8 logic = impl;
9 }

10
11 function impl_LUsXCWD2AKCc() public {
12 // a malicious function stealing 1000 USDT from the caller
13 USDT.delegatecall(abi.encodeWithSignature(
14 "transfer(address,uint256)", owner, 1000
15 ));
16 }
17
18 fallback(bytes calldata input) external
19 returns (bytes memory) {
20 (bool success, bytes memory output) =
21 logic.delegatecall(input);
22 return output;
23 }
24 }
25
26 contract Logic {
27 function free_ether_withdrawal() public {
28 // an attractive function that sends the caller 10 Ethers
29 payable(msg.sender).transfer(10 ether);
30 }
31 }

Listing 1: A function collision occurs between proxy
contract’s impl_LUsXCWD2AKCc() function and function
free_ether_withdrawal() in the logic contract due to
their same signatures.

We exemplify the honeypot contracts in Listing 1, where
function free_ether_withdrawal() in the logic con-
tract allows the caller to withdraw 10 ETH from the contract’s
balance (line 29). However, since this function has the same
function selector with impl_LUsXCWD2AKCc(), the user
transfers 1,000 USDT to the contract owner instead (lines 13–
15). Crafting functions that follow a certain naming pattern
or share the same signature with existing functions is rel-
atively easy: we found a function with the same signature
as free_ether_withdrawal() after approximately 600
million attempts in 1.5 hours with only a commodity laptop.

Storage collision vulnerability. A storage collision hap-
pens when two variables with different types or interpretations
are assigned to the same storage slots across proxy and
logic contracts. Because the two contracts share the same
storage layout, storage collisions often come from mismatched
orders of variable declarations, leading to incorrectly read or
overwritten data. The most common cause of storage collisions
is when one contract writes to a slot, and another reads from
that slot with a different interpretation. Upgrading the logic
contract to newer versions that change the order or types of
variables also creates storage collisions.

We show an example of storage collisions in Listing 2
where proxy contract’s owner variable (20 bytes) and logic
contract’s initialized and initializing variables (1
byte each) use the same slot 0. Note that if multiple contiguous
variables that require less than 32 bytes (for instance, in this
case, two bool variables are 2 bytes in total) exist, they will
be packed into a single storage slot. Also in this example,
when users execute a logic contract function involving the

1 contract Proxy {
2 address private owner; // Storage slot [0x0]
3 [...]
4 address private logic; // Logic contract’s address
5
6 constructor(address impl) {
7 logic = impl;
8 }
9 [...]

10 fallback(bytes calldata input) external
11 returns (bytes memory) {
12 (bool success, bytes memory output) =
13 logic.delegatecall(input);
14 return output;
15 }
16 }
17
18 contract Logic {
19 bool private initialized; // Storage slot [0x0]
20 bool private initializing; // Storage slot [0x0]
21
22 function initialize() external {
23 require(initializing || !initialized);
24 initialized = true;
25 initializing = false;
26 owner = msg.sender;
27 }
28 [...]
29 }

Listing 2: An example of storage collisions between the proxy
and logic contracts. The storage collision occurs at slot 0
between the owner variable (20 bytes) in the proxy contract
versus initialized and initializing variables (1
byte each) in the logic contract.

initialized variable, it may access 1 byte of the owner
variable in the proxy contract.

Potential exploits. Storage collisions can be exploited to
seize control of vulnerable contracts by overwriting the
owner’s address with that of the attacker [15]. Additionally,
adversaries can deceive users into executing malicious logic
contracts in which variables have harmless names but are
designed to access storage slots in the proxy contract, leading
to actions that differ from the user’s expectations.

Listing 2 illustrates the vulnerable proxy and logic contracts
exploited in the real-world attacks against the Audius cryp-
tocurrency [15]. In particular, the logic smart contract contains
an initialize() function that sets the transaction’s sender
as the owner of the contract (line 26) if the owner has not been
set previously (line 23). This function is intended to be called
only once during contract deployment. However, the owner
variable in the proxy contract (line 2) and the initialized
and initializing variables in the logic contract are both
allocated to the same storage slot number 0. Consequently,
even after the initialized and initializing variables
are updated (lines 24–25), indicating the owner has been
assigned, the storage slot is immediately overwritten by the
new owner value (line 26) in the proxy contract. Conse-
quently, the initializing variable in the logic contract is
always true, wrongly indicating that the contracts have not
completed the initialization. This allows the initialize()
function to be executed multiple times and the owner variable
to be reassigned. Attackers indeed exploited this vulnerability
to take control of the Audius governance contracts, as detailed
in Audius’s post-mortem report [15].



III. PROXION

A. Overview

In this paper, we propose PROXION, an automation tool that
aims to reveal proxy smart contracts and their corresponding
logic contracts. The main novelty of PROXION is its capability
to identify the hidden proxy smart contracts that lack both
source code and previous transactions.

To uncover proxy contracts, PROXION employs dynamic
analysis to verify whether the delegate calls forward the
transaction call data in the fallback function. Specifically,
for a given smart contract, PROXION disassembles it into
opcodes (§III-B) and then emulates their EVM execution using
carefully crafted call data (§III-C). If a smart contract is indeed
a proxy, a DELEGATECALL instruction will appear in the
EVM stack and vice versa. Through the emulation of EVM
execution, PROXION can also identify the storage locations
of the logic contracts’ addresses, enabling their easy retrieval
from historical blockchain data (§III-D).

After that, any identified pair of proxy and logic smart
contracts is further analyzed for collisions. Here, another
innovation of PROXION lies in detecting function collisions,
even when one or both contracts do not have available source
code (§III-E). Specifically, when a contract exists solely in
bytecode, PROXION examines the disassembled opcodes to
identify the jump instructions corresponding to code blocks
of functions. PROXION then extracts the 4-byte data of the
function signature that precedes these jump instructions. While
the exact function names remain undisclosed, retrieving these
signatures is sufficient for PROXION to cross-reference and
detect any function collision. We note that existing tools can
detect the rest of the collisions. For example, CRUSH [6]
can identify exploitable contracts with storage collisions.
Slither [2] also can detect function collisions when both proxy
and logic contracts have their source code available.

A prototype of PROXION, featuring the proxy smart contract
finder and the collision detector, is accessible at https://github.
com/Proxion-anonymous/Proxion.

B. Disassembling Smart Contracts

We illustrate the two steps of checking if a given smart
contract is a proxy contract in Figure 3. In the first step,
PROXION determines the tested smart contract is not a proxy
if its bytecode does not contain the DELEGATECALL opcode,
which is the defining factor of all proxy smart contracts. To
learn the opcodes of a smart contract, PROXION disassembles
its bytecode, which results in a sequence of assembly repre-
sentation known as opcodes and operands (e.g., [21], [22]).

We implement this disassembler component of PROXION
based on Octopus, an open-source security analysis framework
that is already capable of translating contract bytecode into
certain opcodes and operands [23]. Moreover, we extend
Octopus so that it covers recently introduced opcodes in
Ethereum, such as CALL, DELEGATECALL, CREATE, and
CREATE2. This is easily achievable since the opcodes have
fixed corresponding bytes. Thereafter, PROXION spots if any

PUSH1
MSTORE
GASPRICE
…

PUSH1
MSTORE
DELEGATECALL
…

PUSH1
CALLER
DELEGATECALL
…

call data:
0x025313a2…

disassembling
into opcodes

emulating
EVM execution

call data:
0x42966c68…

0x42966c68

Fig. 3: PROXION identifies proxy smart contracts in two steps.
§III-B: the contract’s bytecode is disassembled into opcodes.
Contracts without a DELEGATECALL opcode (e.g., ➊) are not
proxies. §III-C: the contract is executed in an EVM emulator
with carefully created call data. If this data is not forwarded
to another contract, the contract is not a proxy (e.g., ➋) and
vice versa (e.g., ➌).

DELEGATECALL opcode exists, concluding the smart contract
is not a proxy (e.g., contract ➊ in Figure 3) or proceeding to
the next step (e.g., contracts ➋ and ➌).

C. Emulating EVM Execution

In the second phase, PROXION checks if delegate calls
are triggered in the tested smart contract’s fallback function,
and they indeed forward the transaction call data to another
smart contract. To do so, PROXION triggers the tested smart
contract with an emulated EVM and carefully crafted call data.
Particularly, this call data contains a random function signature
(i.e., with 4 bytes in size) that is different from signatures
of all other functions in the proxy contract. Thus, it enables
the execution of the proxy contract’s fallback function. To
learn the potentially existing functions’ signatures, PROXION
identifies the locations of PUSH4 opcodes in the contract’s
bytecode and extracts the 4-byte data following each of
them. This approach is based on an observation that popular
contract compilers (e.g., Solidity, Vyper) always include the
function signatures following PUSH4 opcodes. While not all
4-byte data following PUSH4 opcodes is a function signature,
PROXION safely avoids all of them. Next, PROXION emulates
the EVM execution of the tested smart contract along with
the generated transaction call data and observes the memory,
stack, and storage of each instruction. If PROXION does not
observe this data is passed to the logic contract’s context after
the execution of the DELEGATECALL instruction, PROXION
marks the tested smart contract as not a proxy (e.g., contract
➋ in Figure 3). Otherwise, the tested smart contract is a proxy
(e.g., contract ➌).

To implement our EVM emulator, we extend Octopus [23]
to handle opcodes that have values depending on the state of
the blockchain. Specifically, we use the values from the latest

https://github.com/Proxion-anonymous/Proxion
https://github.com/Proxion-anonymous/Proxion


block on the blockchain to support the NUMBER opcode that
pushes the current block’s number to the EVM stack. Simi-
larly, we use the values in the latest block for the BLOCKHASH,
DIFFICULTY, GASLIMIT, TIMESTAMP, and GASPRICE
opcodes. We also assign fixed values for a few other opcodes,
such as CHAINID, BASEFEE, and COINBASE, using the
most probable values (e.g., the chain ID of Ethereum’s mainnet
is 1). Adding these blockchain-related opcodes enhances the
fidelity of the EVM emulation (e.g., with fewer runtime errors
when encountering them).

Moreover, we implement our EVM emulator to support
CALL and DELEGATECALL opcodes that specifically call
another contract and obtain the execution results before pro-
ceeding. To do so, we create two EVM emulator instances,
one for the caller and another for the callee, and copy the
results back from the callee to the stack of the caller instance
to simulate the function returning.

For the opcodes that place bytecode on Ethereum at a smart-
contract address (e.g., CREATE and CREATE2), we use a fixed
address to ensure that we can retrieve the exact address of a
newly created contract. If our EVM emulator encounters this
fixed address, we treat it like a normal smart contract. This
method is acceptable because of the negligible probability of
address collision (e.g., only 1 out of 2160 in Ethereum).

D. Finding Associated Logic Contracts

Upon identifying a proxy smart contract, PROXION finds its
associated logic contracts, which also can be done by looking
into the EVM stack when the DELEGATECALL instruction
is executed. Indeed, the address of the current logic contract
is one of the stack inputs following the DELEGATECALL
instruction.

Next, PROXION also finds all other logic smart contracts
associated with the tested proxy contract in the past. If
PROXION observes the found logic contract’s address is hard-
coded in the proxy contract’s bytecode, it considers the test
proxy contract follows the minimal proxy pattern (i.e., EIP-
1167). These minimal proxy contracts include no function but
only a delegate call in the fallback function and fix the address
of the logic contract in the bytecode. Thus, they are lightweight
(e.g., their bytecode is less than 100 bytes) and have only one
associated logic smart contract throughout history.

If the found logic contract’s address is in a proxy contract’s
storage slot, PROXION employs a binary search to uncover all
addresses stored in that slot. Intuitively, reusing old versions
of logic contracts (e.g., containing bugs or missing features)
is uncommon. Thus, PROXION implements a binary search
for blocks in which the value of the storage slot changes.
Specifically, the process begins by comparing the storage
slot values at the genesis and the latest block using the
getStorageAt API. If the values match, it indicates no
change in the storage slot within this range of blocks. If they
differ, the range is divided into two halves, and the process is
repeated to identify all the distinct values ever stored in the
proxy smart contract under test. We illustrate how PROXION
finds the logic contracts’ addresses in Algorithm 1.

Algorithm 1 Finding addresses contained in a storage slot.
Require: PSC: The tested proxy smart contract.

hlower, hupper : The lower and upper bounds for the height of consid-
ered blocks (e.g., the genesis block and the latest block).

Ensure: A: The set of logic contracts’ addresses associated with PSC.

1: procedure PARTITIONBLOCKS(hlower, hupper)
2: Vlower ← getStorageAt(PSC, hlower)
3: Vupper ← getStorageAt(PSC, hupper)
4: if Vlower = Vupper then ▷ Storage slot values are the same.
5: return {Vlower}
6: end if
7: hmid ← ⌊(hlower + hupper)/2⌋ ▷ Binary search.
8: Alower ← PARTITIONBLOCKS(hlower, hmid)
9: Aupper ← PARTITIONBLOCKS(hmid + 1, hupper)

10: A ← Alower +Aupper − {∅}
11: return A
12: end procedure

E. Detecting function collisions without source code

When one or both proxy or logic contracts do not have
source code, PROXION analyzes their disassembled opcodes
to detect function collisions. It is important to remember
that function signatures are always preceded by a PUSH4
opcode while the reverse is not true (i.e., the data following
a PUSH4 opcode can be arbitrary). Therefore, the challenge
lies in identifying which 4-byte data subsequent to the PUSH4
opcodes actually constitutes a function signature.

To achieve this, PROXION begins by identifying the jump
instructions (e.g., JUMP or JUMPI opcodes), which divide
the disassembled code into several basic blocks. These code
blocks may represent if-else statements, loops, or function
calls, which are distinguishable by how the EVM execution
reaches them via the jump instructions. In particular, the EVM
execution typically jumps to a specific function after a con-
dition involving its function signature is satisfied (e.g., when
call data contains that signature). Thus, PROXION searches
for a pattern of opcodes containing PUSH4 (i.e., pushing 4
bytes), EQ (i.e., equal), and *JUMPI (i.e., conditional jump).
PROXION then extracts the 4-byte sequence following the
PUSH4 opcode within these patterns, treating it as the function
signature. Once PROXION has gathered function signatures
from both the proxy and logic contracts, PROXION cross-
checks them pairwise to find the collisions. To speed up the
collision detection in a large dataset of contracts (see Sec-
tion IV-A), PROXION groups contracts based on their bytecode
hash, indicating that the contracts are identical despite having
different addresses.

In terms of implementation, PROXION utilizes the state-of-
the-art decompiler tool Panoramix [24], an integral part of
Etherscan, to disassemble the bytecode and identify the code
blocks. PROXION then parses Panoramix’s outputs to identify
the functions and then retrieve their signatures.

IV. EVALUATION

This section evaluates PROXION in three dimensions: the
effectiveness in identifying proxy smart contracts (§IV-B);
the accuracy in detecting collision issues (§IV-C); and the
efficiency of analyzing a large-scale contract data set (§IV-D).



A. Datasets and Methodologies

We execute PROXION with all active smart contracts as
the inputs in October 2023. We also compare PROXION with
USCHunt [5] and CRUSH [6] using their independent datasets.
Particularly, our evaluation uses the following three datasets:

• [D1] contains 36,123,714 active contracts as of October
2023. We first query all contracts’ addresses and de-
ployment blocks from Google BigQuery [25]. Then, we
retrieve their bytecode and storage states from a local
archive node [26] and their source code from Ether-
Scan [1]. We also assign the source code of a contract to
all other contracts with the same bytecode hash.

• [D2] is the Smart Contract Sanctuary dataset [27], used to
evaluate USCHunt originally. It contains 329,764 smart
contracts deployed from 2017 to 2022, with source code
available and collected from EtherScan [1].

• [D3] is obtained from the authors of CRUSH [6] in
August 2024. It comprises 53,580,899 contracts deployed
from July 2015 to April 2023. The contracts in this
dataset may lack source code, past transactions, or both.
Some contracts in this dataset may already be destroyed.

We execute PROXION with all three datasets to evaluate
its effectiveness in finding proxy contracts. We also execute
USCHunt with [D2] and CRUSH with [D3] to show that
PROXION can identify unknown proxy and logic contracts
within datasets already examined by these existing tools.

Regarding the accuracy evaluation, we execute PROXION,
USCHunt, and CRUSH with the dataset [D2] because we
can manually examine its contracts to establish ground truth.
Unfortunately, there are several thousand cases where the tools
report proxy contracts differently (cf. §IV-B), making manual
verification exceedingly time-consuming. To conduct a fair
comparison with reduced manual effort, we use the tools to
further identify collision issues and then omit the examination
of proxy contracts marked as collision-free by all tools. Here,
we note that (1) PROXION uses CRUSH’s storage collision
detection, and (2) CRUSH does not detect function collisions.
Specifically, USCHunt, CRUSH, and PROXION identify 116,
102, and 55 storage collisions, totaling 206 unique proxy
and logic contract pairs. In the case of function collisions,
USCHunt identifies 300, while PROXION reports 557, resulting
in another 561 unique cases for manual verification.

To evaluate the performance of PROXION, we apply it on
the dataset [D1]. Specifically, we operate PROXION on a
system equipped with Ubuntu 22.04 OS, featuring 12 cores
(24 threads) at 3.8 GHz each and 64 GB of RAM.

B. Effectiveness in Identifying Proxy Contracts

PROXION discovers 19,599,317 proxy contracts, which
represent 54.2% of all contracts in dataset [D1]. Notably,
PROXION uncovers approximately 1.5 million proxy contracts
that are hidden, lacking both source code and past transactions.

Furthermore, PROXION discovers more proxy contracts than
USCHunt and CRUSH when testing against their respective
datasets. When running with the dataset [D2], we observe

TP FP TN FN Acc.

Storage
collision

USCHunt 33 83 79 11 54.4%
CRUSH 26 76 86 18 54.4%

PROXION 27 28 134 17 78.2%
Function
collision

USCHunt 299 1 0 261 53.3%
PROXION 557 0 1 3 99.5%

TABLE II: PROXION has higher accuracy than the state-of-
the-art tools in detecting storage and function collisions.

that PROXION experiences notably fewer failure cases than
USCHunt. Specifically, USCHunt encounters halt due to con-
tract compilation errors (e.g., unknown compiler versions) in
about 30% of cases.2 Meanwhile, PROXION fails to emulate
the execution, for instance, due to insufficient values on the
EVM stack in only about 1.2% of contracts. In total, PROXION
identifies 35,924 proxy contracts, whereas USCHunt detects
only 29,023, which is roughly seven thousand fewer.

When executing the dataset [D3], CRUSH identifies 26.6%
of the examined smart contracts, totaling 14,237,696, are
identified as proxy contracts. PROXION reports about 1.2
million fewer proxy contracts than CRUSH in this dataset,
totaling 13,042,496 proxy smart contracts. This outcome oc-
curs because CRUSH categorizes any contracts that involve
DELEGATECALL instructions as proxy contracts, including
the one making library calls. In contrast, PROXION does not
consider this condition when classifying proxy contracts (cf.
Section II-B). When excluding those proxy smart contracts,
PROXION uncovers more 1,667,905 proxy contracts than
CRUSH does, none of which have past transactions available.

C. Accuracy in Detecting Collision Issues

We report the collision detection accuracy in Table II.
Regarding storage collisions, PROXION achieves an accuracy
of 78.2%, surpassing both USCHunt and CRUSH, each achiev-
ing an accuracy of 54.4%. USCHunt and CRUSH generate
more false positives than PROXION, albeit for different rea-
sons. Specifically, USCHunt mistakenly identifies variables
with different names in separate contracts as collisions, often
overlooking that one variable may serve as storage padding
and is not exploitable. Also, using CRUSH’s storage collision
detection, PROXION naturally has a similar number of true
positives to CRUSH (27 versus 26). However, PROXION still
has a higher accuracy than CRUSH thanks to its more effective
identification of proxy smart contracts in the preceding step,
in which PROXION precisely excludes library contracts.

Regarding function collisions, PROXION achieves an accu-
racy of 99.5%, with no false positives and only three false
negatives. In contrast, USCHunt has a lower accuracy of
53.3%, with numerous false negatives due to the underlying
Slither failing to identify proxy contracts. Here, PROXION also
misses three function collisions due to runtime errors when
emulating the EVM execution (e.g., insufficient values).

2We run USCHunt with the default compiler flags. There may be fewer
errors if the compiler versions are provided when compiling each contract.
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Fig. 4: Accumulated number of pairs of proxy and logic
contracts identified by PROXION from 2015 to 2023. In the
vast majority of them, the proxy contracts only have bytecode
available.

D. Performance

On average, PROXION analyzes a smart contract in just
6.4 milliseconds to determine if it is a proxy, translating to
156.3 contracts per second. This efficiency enables PROXION
to process roughly 36 million active contracts in dataset [D1]
within approximately 65 hours.

Moreover, PROXION’s binary search method for identifying
logical contracts linked to a proxy contract also significantly
boosts its performance. For each proxy contract, PROXION
makes 26 getStorageAt API calls on average, which is
a substantial improvement over the naive method of querying
all 15 million Ethereum blocks.

Regarding function collision detection, thanks to PROXION
avoiding re-testing identical contracts with the same bytecode,
it takes only 6.7 milliseconds to check if a contract pair has
a collision issue on average.

V. PROXY SMART CONTRACTS’ LANDSCAPE

In this section, we present the comprehensive landscape of
proxy smart contracts in Ethereum, resulting from PROXION
analyzing all alive contracts for function and storage collisions.
Specifically, we present several findings regarding the growth
of proxy contracts over the years, the number of found colli-
sions, and the trends in their design patterns and deployments.

First, over half of the active contracts are proxy or logic
contracts, and the majority of proxy contracts do not publish
their source code. We show the number of active proxy
contracts identified by PROXION in Figure 4. As of October
2023, there are 19,599,317 proxy contracts, which represent
54.2% of all contracts. Of these, approximately 2 million are
pairs of proxy and logic contracts with available source codes
for both, as indicated by the blue line. Conversely, about 90%
of proxy contracts lack available source codes, as shown by
the orange and red lines.

Furthermore, there has been a noticeable divergence in the
growth trends of proxy contracts before and after 2020. Only 2
million proxy contracts were deployed before 2020, while 7.6
million proxy contracts were deployed in the first ten months

Year Function collisions Storage collisions
2017 24 0
2018 5,341 7
2019 16,136 37
2020 28,448 34
2021 705,801 725
2022 808,493 2,082
2023 2,541 137
Total 1,566,784 3,022

TABLE III: Number of function and storage collisions detected
by PROXION. Notably, 1,545,722 (or 98.7%) proxy contracts
with function collisions are actually identical.

of 2023. These figures closely track the historic adoption
of the proxy pattern: the demand for contract upgradeability
pre-2018, the testing phase between 2018-2020 with several
EIPs [8], [9], [10], [11], and the mainstream phase since 2020
in which more than 93% of contracts are proxy.

Second, PROXION detects about 1.5 million function colli-
sions, 98.7% of which are duplicated contracts with the same
code, and about 3 thousand exploitable storage collisions. We
report the number of function and storage collisions found
by PROXION in Table III. Specifically, starting from the 19.5
million pairs of proxy and logic contracts, PROXION detects
a total of 1, 566, 784 pairs having function collisions and
3, 022 pairs having storage collisions. Notably, 98.7% of the
detected function collisions come from many proxy contracts
duplicated from the OwnableDelegateProxy3 contract. In those
cases, function collisions are caused by the proxyType(),
implementation(), upgradeabilityOwner() func-
tions appearing in both proxy and logic contracts, possibly due
to contract inheritance [28].

Regarding storage collisions, we identified 91 instances
out of 3,022 where both proxy and logic contracts have
their source code available. We studied their owners and
pinpointed 11 entities, including Ape Finance, Compound,
Convex, Curve, GolduckDAO, LeverFi, Poly, Polyhedra Net-
work, Polymath, Tokeny, and Zora. As of this writing, these
entities manage stakes totaling 8 billion USD. However, it
is important to acknowledge that they may manage stakes in
other contracts that are not prone to such vulnerabilities.

Third, we find the distributions of bytecode uniqueness
are heavily skewed, with 42% of proxy contracts duplicating
from just three popular contracts. We highlight the number
of unique proxy and logic contracts in Figure 5. Interestingly,
while PROXION identifies approximately 19.6 million proxy
contracts and 70 thousand associated logic contracts, most
of them are actually duplicates (i.e., having the same com-
piled bytecode) deployed at different addresses. Particularly,
Figure 5 reports only 96, 420 and 38, 707 unique proxy and
logic contracts, respectively. We see that the distributions of
bytecode uniqueness are heavily skewed, in which a small
number of contracts are duplicated significantly more than
others. To be more specific, the three most popular proxy

3https://etherscan.io/address/0x0a08e6058eaaa847a1adb55b0a69b8469ea5a5b3

https://etherscan.io/address/0x0a08e6058eaaa847a1adb55b0a69b8469ea5a5b3
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Fig. 5: Most contracts are duplicates: only 96, 420 and 38, 707
unique proxy and logic contracts, respectively. (5a): three
proxy contracts are duplicated more than 1 million times. (5b):
two logic contracts have the same bytecode with more than
ten thousand other contracts.

# Contracts Ratio
EIP-1167 [8] 17, 453, 264 89.05%
EIP-1822 [9] 22, 789 0.12%
EIP-1967 [10] 196, 688 1.00%
Others 1, 926, 576 9.83%

TABLE IV: The number of proxy contracts following certain
design standards. The vast majority of proxy contracts follow
the minimal design (EIP-1167).

contracts have more than a million of duplicated contracts,
and they are CoinTool App4, XENTorrent5, and OwnableDel-
egateProxy contracts. We also notice that while most logic
contracts are not duplicated frequently, there are two standout
logic contracts6,7 having more than 10, 000 duplicates. We
conjecture that these contracts have source code, which renders
cloning them uncomplicated and relates to the popularity of
the non-fungible token marketplaces in recent years (e.g.,
OwnableDelegateProxy is a core component of the popular
Wyvern protocol [29]). It is worth noting that all the duplicates
of the popular proxy contracts above associate with the same
logic contracts. For example, the CoinTool App logic contract8

is referenced by almost 3.5 million proxy contracts that are
duplicates of the CoinTool App proxy contract. These findings
indicate a widespread contract cloning practice that preserves
the cloned contract’s functionalities. It may be, however, not
ideal from the decentralization perspective, as potential bugs
or vulnerabilities of the cloned contracts are also propagated,
as noted in the previous paragraph or in existing work [30].

Fourth, the minimal proxy design dominates the standard
proxy contracts while a non-negligible portion of non-standard
proxy contracts exists. We present the distribution of proxy
contracts’ design patterns in Table IV. Notably, most of them
(89.05%) adhere to the minimal design standard [8], which
includes only the delegate call in the fallback function and

4https://etherscan.io/address/0x95a3946104132973b00ec0a2f00f7cc2b67e751f
5https://etherscan.io/address/0x4e488a5367daf86cfc71ea3b52ff72ca937efcf8
6https://etherscan.io/address/0xf17b1a1f68e1ddaa2e3285437b96ea28af2a2dc0
7https://etherscan.io/address/0xa471cd47769c3a788ad9c7b3d8350f195bf672bd
8https://etherscan.io/address/0x0de8bf93da2f7eecb3d9169422413a9bef4ef628
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Fig. 6: Number of upgrades for logic contracts in log scale.
Most proxy contracts (99.7%) have not upgraded to a newer
version of logic contracts.

a hard-coded logic contract address in the bytecode. These
minimal proxy contracts are not vulnerable to function and
storage collisions due to the absence of variable and function
declarations. We further categorize proxy contracts into other
standards based on the locations storing their logic contracts’
addresses. In particular, 22, 789 contracts are categorized
under the EIP-1822 standard (Universal Upgradeable Proxy
Standard) as they utilize a specific storage slot derived from the
Keccak-256("PROXIABLE") hash. Similarly, 196, 688 con-
tracts follow the EIP-1967 standard because they store logic
contract addresses in a slot derived from the Keccak-256
hash of ("eip1967.proxy.implementation"). We also
note that there are 9.83% of the proxy contracts storing their
logic contract’s addresses in the storage without conforming
to any known design patterns.

Fifth, we find that most proxy contracts have not upgraded
to a newer version of logic contracts. We show the number of
contract upgrade events in which the logic contract’s address
is updated in Figure 6. We find that the number of upgraded
smart contracts is insignificant, e.g., only 51, 925 proxy con-
tracts have upgraded their logic implementations throughout
history. The majority of these contracts also upgrade only a
few times (i.e., having only 1.32 associated logic contracts on
average). We also observe that upgrade events are infrequent;
only 68, 804 upgrading events ever occurred, meaning, on
average, an upgrade happens only once per 200 Ethereum
blocks. From the security point of view, such an infrequent
upgrade may render proxy contracts less prone to storage
collisions, which often arise during contract upgrades.

VI. DISCUSSION

In this section, we discuss a few key points. We first describe
the limitations of PROXION and explain why they do not
undermine PROXION’s contributions (§VI-A). Based on the
discussed limitations, we outline a few potential follow-up
works for PROXION (§VI-B).

https://etherscan.io/address/0x95a3946104132973b00ec0a2f00f7cc2b67e751f
https://etherscan.io/address/0x4e488a5367daf86cfc71ea3b52ff72ca937efcf8
https://etherscan.io/address/0xf17b1a1f68e1ddaa2e3285437b96ea28af2a2dc0
https://etherscan.io/address/0xa471cd47769c3a788ad9c7b3d8350f195bf672bd
https://etherscan.io/address/0x0de8bf93da2f7eecb3d9169422413a9bef4ef628


A. Limitations

When analyzing proxy contracts, PROXION misses the
contracts following the Diamonds, Multi-Facet Proxy design
pattern [11], in which only the function signatures registered
by the contract owner can trigger the delegate calls in the
fallback function. Unfortunately, PROXION can currently only
send randomly generated call data during EVM emulation and,
thus, cannot detect these diamond contracts.

Another limitation of the system is the occurrence of
runtime errors, which are relatively low (e.g., at 1.2%) during
the emulation of EVM execution of smart contracts (cf.
Section IV-Bs). Additionally, EVM emulation may inevitably
yield results that differ from actual contract execution, al-
though the extent of these discrepancies is not known.

B. Future Work

Future work for PROXION includes identifying proxy
contracts that follow the diamond design pattern [11].
A potential solution involves extracting all registered
functions from past transactions (similar to CRUSH [6])
and utilizing them to generate call data. When the
source code is available, PROXION may employ a static
analysis approach like USCHunt [5], combining with the
information of the slot storing logic contract’s address (i.e.,
Keccak-256("diamond.standard.diamond.storage")).

PROXION can also be extended to analyze proxy smart con-
tracts beyond Ethereum. Similar to USCHunt [5], PROXION
may apply to several other blockchains, such as Arbitrum,
Avalanche, Binance, Celo, Fantom, Optimism, and Polygon.

VII. RELATED WORK

We consider related work that studies the same target of
proxy smart contracts (§VII-A), discusses contract upgradabil-
ity (§VII-B), or performs analysis on smart contracts (§VII-C).

A. Finding Collisions in Proxy Smart Contracts

Several tools aim to detect proxy smart contracts and their
collision issues; see Table I for a comparison.

Slither examines the source code of contracts to determine
if they are proxy contracts [2]. However, Slither’s proxy
detection relies on keyword searches, such as ”proxy” or ”del-
egatecall,” which may lead to many false positives. Similarly,
USCDetector [4] also detects proxy contracts by checking if
the contracts’ bytecode contains the DELEGATECALL opcode
and related keywords, such as ”update” or ”upgrade”. Unlike
PROXION, Slither does not identify associated logic contracts
and USCDetector requires past transactions to do so.

Etherscan is a widely recognized web-based explorer for the
Ethereum blockchain, featuring an integrated proxy contract
verification tool [1]. This tool identifies contracts with the
DELEGATECALL opcode as proxy contracts, a result that
Etherscan admits may lead to numerous false positives [31].
PROXION applies a similar initial filtering process for proxy
contracts and then conducts dynamic analysis, resulting in
more precise detection.

USCHunt [5] employs static analysis based on Slither
to detect proxy contracts with published source code, and
their security vulnerabilities, such as collisions, on eight
blockchains, including Ethereum. PROXION focuses on im-
proving the detection of proxy contracts and collision issues,
specifically on the Ethereum blockchain, which has shown to
be more accurate than USCHunt.

Salehi et al. [3] studied the ownership of upgradability
in smart contracts, i.e., finding out who can upgrade the
proxy contracts. Similar to PROXION, this work also performs
dynamic analysis on smart contracts’ bytecode, thus covering
more contracts than USCHunt. Unlike PROXION, however,
the analysis here involves replaying past transactions to the
contracts under tests, thus limiting the effective analysis to
only contracts with many transactions.

CRUSH is a newly developed automation tool that detects
storage collisions and generates verified exploits [6]. The
CRUSH engine is also employed by PROXION to identify
storage collisions, particularly for proxy contracts without
source code. Like Salehi et al., CRUSH depends on historical
transactions to locate proxy contracts, thus missing out on
millions of hidden contracts. Additionally, unlike PROXION,
CRUSH is not equipped to detect function collisions.

B. Upgradeability in Smart Contracts

The upgradeability in smart contracts has been discussed
extensively in several EIPs [8], [9], [10], [11], blog posts [17],
[32], and studies [33], [28], [34], [35]. These works focus
on designing new proxy patterns to enable upgrading smart
contracts at scale or studying the status quo of upgrad-
able contracts. Our work also studies upgradable contracts
in Ethereum, which is a subset of proxy smart contracts.
We further reveal that upgrading events are actually rare,
and functionality cloning is a more popular usage of proxy
contracts. Our work, thus, provides an additional discussion
to the existing literature on upgradeability in smart contracts.

C. Smart Contracts Analyzers

Many smart contract analyzers have been proposed in recent
years to detect smart contract vulnerabilities [36]. Commonly,
they can be categorized into static analyzers and dynamic ana-
lyzers based on their overall approach. Particularly, static ana-
lyzers detect smart contract vulnerabilities by inspecting their
source code or bytecode, using techniques such as information
flow analysis (e.g., Slither [2], MadMax [37]) or symbolic
execution (e.g., Oyente [38], MantiCore [39], Securify [40],
teEther [41], Mythril [42], Zeus [43], Osiris [44]). On the
other hand, dynamic analyzers execute the test smart contracts
and observe the behaviors of vulnerable ones, using fuzzing
(e.g., ReGuard [45], ContractFuzzer [46], Confuzzius [47],
sFuzz [48], Harvey [49]) or validation (e.g., MAIAN [50],
Sereum [51], SODA [52], ESCORT [53]). We refer to a recent
survey by Kushwaha et al. [54] for a more comprehensive
review of such existing analysis tools. This paper proposes
PROXION, a new hybrid contract analyzer focusing specifically
on the collision issues of Ethereum smart contracts.



VIII. CONCLUSION

While the proxy design pattern enables Ethereum smart
contract upgrades, it also introduces security risks from func-
tion and storage collisions. Previous efforts to detect these
collisions fall short due to the limited coverage of testing
contracts under test, especially for the hidden ones without
source code or transaction history. To fill this gap, we propose
PROXION, an automated tool that efficiently uncovers hidden
proxy contracts and their collision vulnerabilities. Utilizing
PROXION, we analyzed all Ethereum smart contracts and
discovered that half are associated with the proxy pattern, and
millions are vulnerable to collisions. Observations on proxy
smart contracts’ evolution suggest an increased adoption of the
proxy pattern in the coming years, making PROXION a crucial
step toward securing proxy contracts in this anticipated future.
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[44] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs

in Ethereum smart contracts,” in Proc. ACSAC, 2018.
[45] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:

finding reentrancy bugs in smart contracts,” in Proc. ACM ICSE, 2018.
[46] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart

contracts for vulnerability detection,” in Proc. ACM/IEEE ASE, 2018.
[47] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius: A

data dependency-aware hybrid fuzzer for smart contracts,” in Proc. IEEE
EuroS&P, 2021.

[48] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz:
An efficient adaptive fuzzer for solidity smart contracts,” in Proc.
ACM/IEEE CSE, 2020.
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