
Fork State-Aware Differential Fuzzing for
Blockchain Consensus Implementations

Wonhoi Kim1∗, Hocheol Nam1∗, Muoi Tran2, Amin Jalilov1, Zhenkai Liang3, Sang Kil Cha1, Min Suk Kang1†
1KAIST, {wh.kim, hcnam, amin, sangkilc, minsukk}@kaist.ac.kr

2ETH Zürich, dutran@ethz.ch
3National University of Singapore, liangzk@comp.nus.edu.sg

Abstract—Blockchain networks allow multiple client imple-
mentations of the same consensus algorithm by different develop-
ers to coexist in the same system. Ensuring correct implementa-
tions among these heterogeneous clients is crucial, as even slight
semantic discrepancies in their implementations can lead to safety
failures. While existing fuzzing frameworks have discovered
implementation flaws in blockchain, they suffer from several
challenges in testing them with sequences of conflicting blocks,
called forks. Existing tools fail to adequately assess the fork-
handling processes in blockchain implementations when relying
on traditional code coverage feedback, which lacks the granular-
ity needed to navigate the diverse and complex fork-handling
scenarios. This paper introduces FORKY, a fork state-aware
differential fuzzing framework designed to detect implementation
discrepancies within the critical fork-handling process with its
novel fork-aware mutation and fork-diversifying feedback mech-
anisms. We test FORKY on the two most influential blockchain
projects: Bitcoin and Ethereum, which are the representatives of
the two major blockchain consensus algorithm families, Proof-
of-Work (PoW) and Proof-of-Stake (PoS) consensus algorithms.

Index Terms—Blockchain, consensus, differential fuzzing

I. INTRODUCTION

The open nature of blockchain projects allows heteroge-
neous implementations of clients with the same consensus
algorithm to coexist in the same network. Major blockchain
projects, such as Bitcoin and Ethereum, have maintained a
strong community-driven, open client development culture,
where multiple independent teams of developers implement
their consensus clients in different languages and maintain
them independently. As a result, blockchains are often oper-
ated by multiple families of clients, each of which has multiple
versions coexisting at the same time. For example, as of March
2024, only 39.2% of Bitcoin clients run the most up-to-date
Bitcoin Core version 26.0.0, whereas 60% run older versions
of Bitcoin Core and 1% run several other client families (e.g.,
btcd, bcoin) [58], [19]. Ethereum’s four major client families
(i.e., Prysm, Lighthouse, Teku, Nimbus) are used by 37%,
33%, 19%, 10%, respectively [18], [49].

Having some implementation diversity in distributed net-
works is desirable in general as the risk of single point of fail-
ures can be reduced; yet, special care must be taken to ensure
that all these heterogeneous client implementations correctly
agree on the same blockchain states. In blockchain consensus

∗ Both authors contributed equally to this work.
† Corresponding author.

Split views

Single, converged view
Blockchain input 
in time domain

Client α
Client β
Client 𝛾

ßThis branch is chosen
   as the “main” chain

Client α,   Client β,   Client 𝛾

Client α,  Client β Client 𝛾

Problems: Client 𝛾may execute wrong smart 
contracts, wrong financial transactions, etc.

C

B

D
A

C

B

D
A

C

B

D
A

A B C
time

process
input

Discrepancy
Triggered?

output
chain view

Logical fork structure

A Block A                     A is parent of BA B
Vote                         Voting to AA

Legends

D

“fork” is created! 

No

Yes

C

B

D
A

Different branches 
are chosen!

Fig. 1. An example of how discrepancies in blockchain clients’ fork-handling
logic can lead to split views among clients.

algorithms, even a slight semantic difference between two
implementations of the same algorithm can lead to a critical
safety violation.

A simple example in Figure 1 illustrates how discrepancies
in implementation can lead to safety violations in blockchain
networks. Three clients (or nodes) α, β, and γ receive block
messages (□) and votes (⋆) from the blockchain network
in a particular sequence. These clients encounter a fork, a
condition in blockchain inputs where two blocks (B and C)
extend from the same parent block (A), creating two compet-
ing branches.1 Since competing branches, such as B and C,
may contain conflicting transactions, only one branch should
eventually become the main (or canonical) branch. Ideally,
if the blockchain’s consensus algorithm operates correctly
(without implementation bugs), all client nodes in the network
should eventually converge to a single view, agreeing on
the same branch. However, discrepancies in the consensus
implementations across multiple clients may lead to divergent
views (e.g., α and β may select a different branch than γ).
These divergent views, whether permanent or transient, can
cause serious issues, as a client operating on an incorrect view
might mishandle transactions or smart contracts based on their
divergent blockchain state.

This observation suggests a need for a practical testing tool
capable of evaluating multiple blockchain clients with inputs
exhibiting forks, particularly, to find discrepancies in the fork-
handling logic. While recent studies [17], [37], [57] have made

1In this paper, the terms “forks” and “branches” specifically refer to those
within the blockchain data structure, not to be confused with software code
forks and branches.



strides in fuzzing blockchain consensus implementations, cur-
rent blockchain fuzzers fall short in directly testing fork-
handling logics and finding discrepancies in implementation.

A key technical challenge for existing fuzzers lies in their
inability to grasp the complex state transitions found in
blockchain consensus, particularly concerning fork-handling
mechanisms. Blockchain consensus algorithms are distinct
from traditional software in that they are highly stateful and
have heavy state transitions. Particularly, the arrival of each
new block and other auxiliary messages (e.g., votes) can
significantly alter the blockchain state; e.g., one new block
can tip the balance in favor of one branch over another as
seen in Figure 1. The primary challenge in testing consensus
implementations is to find an input sequence of blocks potent
enough to significantly influence the states crucial to fork-
handling logic. Unfortunately, conventional code coverage
feedback methods may not be effective enough for identifying
such important blockchain inputs, as two different blockchain
inputs could yield the same branch coverage, yet only one
might alter the blockchain state in a meaningful way.

Current fuzzers, including Fluffy [57], Tyr [17], and
LOKI [37], can partially handle this problem by randomly
varying blockchain transactions and block orders. However,
relying only on code coverage feedback [57] or random block
generation based on a coarse-grained state model [17], [37],
these tools lack the ability to precisely represent intricate fork
structure layout of blockchain inputs, limiting their ability
to test the fork-handling logic in blockchain consensus algo-
rithms reliably and effectively.

In this paper, we tackle this challenge by addressing the
intricacies of analyzing blockchain states, especially fork
structures, within fuzzing processes. Our approach is the
first to consider the complex blockchain fork states, which
we coin as fork state-aware fuzzing, testing a wide range
of blockchain states to detect critical discrepancies in fork-
handling logic found in consensus algorithms. We employ
two main strategies: fork-aware mutation strategies and a fork-
diversifying feedback mechanism. The former leverages a deep
understanding of fork structures to test diverse blockchain
states, thus enhancing the detection of fork-handling logic
discrepancies beyond traditional mutation methods. The latter
introduces a novel feedback mechanism aimed at uncovering
previously unseen fork-handling events, overcoming the limi-
tations of conventional code coverage feedback. By selecting
fuzz inputs that present new and distinct fork events, our
approach ensures a wider range of blockchain states are tested,
leading to more effective and comprehensive testing outcomes.

We design and implement FORKY, an open-sourced differ-
ential fuzzer based on our proposed fork state-aware fuzzing
methodology. FORKY effectively test fork-handling logic in
Proof-of-Work (PoW) and Proof-of-Stake (PoS) blockchain
consensus algorithms. Our evaluation of FORKY across 34
Bitcoin clients and 4 Ethereum clients demonstrates its ef-
fectiveness in finding several discrepancies in them.

In summary, our contributions are as follows:

• We propose a new fork state-aware fuzzing methodology
aimed at testing fork-handling logic within blockchain
consensus algorithms, which is complementary to existing
blockchain fuzzers.

• We present fork-aware mutation strategies that generate
inputs exhibiting many fork conditions, and a new fork-
diversifying feedback mechanism that can reliably explore
unseen fork-handling cases.

• We present FORKY, a differential fuzzer that implements
our approach and evaluates it on Bitcoin’s PoW and
Ethereum’s PoS consensus algorithms, finding several dis-
crepancies in their fork-handling implementations.

• We open-source FORKY for its wider use in other PoW and
PoS blockchains [3].

II. BACKGROUND

In this section, we first introduce several basic blockchain
terminologies to understand the rest of the paper.
Blockchains. A blockchain (e.g., Bitcoin [38], Ethereum [13])
is a distributed ledger storing transactions in a chain of blocks
that are cryptographically linked together. The blockchain is
commonly maintained by a peer-to-peer (P2P) network of
nodes or clients, which store a replica of the blockchain lo-
cally. Blockchain client nodes collectively follow a consensus
algorithm to agree on the validity of individual blocks, aiming
to have exactly the same view (i.e., identical copies of blocks).
Typically, each block consists of the hash of its previous block
in the blockchain (called the parent block) and transactions.

Users generate transactions that are periodically grouped
into a new block that extends the head (i.e., the latest block
of the winning branch) by special clients (e.g., miners in PoW
consensus or validators in PoS consensus). A new block is then
circulated in the P2P network and independently validated by
clients.
Proof-of-Work algorithm. Many early blockchains, such as
Bitcoin, use the Proof-of-Work (PoW) algorithm to achieve
consensus among untrusted client nodes. The PoW algorithm
operates through specialized client nodes, known as miners,
tasked with creating blocks. To create a block, miners compete
in finding a specific mathematical solution known as a nonce,
that, when combined with block data, produces a hash with
a required number of leading zeros. A chain of blocks with
greater cumulative computational effort is regarded as the
winning branch if multiple branches exist in the network.
In general, the longest branch is regarded as the winning
branch as the series of blocks that required the most substantial
computational effort to construct necessitate smaller hash
values.
Proof-of-Stake algorithm. More recent blockchains have
adopted the Proof-of-Stake (PoS) algorithm, which selects val-
idators to create blocks based on their stake (i.e., the amount of
cryptocurrency they hold). In 2022, Ethereum switched to PoS
from PoW with the introduction of the Gasper protocol [14].
In Gasper, one validator is chosen at random as the proposer,
who is responsible for creating a new block and proposing
it to the network. Other validators must attest to the validity



of the proposed block by casting votes (or attestations) in a
timely manner; otherwise, they are penalized for rule violation
(i.e., lose their deposit). When two-thirds of validators vote
correctly on the chain head for two epochs in a row, the block
can not be reverted by other forks.
Fork and fork-choice rules. When a client receives two or
more blocks extending the same parent block, it has multiple
branches of blocks in its local blockchain copy, or a fork.
Forks are resolved quickly following a pre-defined set of
rules (e.g., favoring the longest branch in Bitcoin). The set of
rules is called the fork-choice rules (because they determine
which branch to choose when handling a fork) and may vary
depending on the consensus algorithms in different blockchain
projects [38], [14]. Note that it is natural for a PoW or PoS
blockchain to have forks in the first place because miners
or validators may create blocks while being unaware of the
existence of other blocks extending the same parent block.
Reorganization. When a newer branch gets chosen by the
fork-choice rules and thus has to overwrite the already ac-
cepted branch, some blockchain states need to be rolled back
(e.g., transactions in the overwritten blocks are marked as
unspent) and some new state changes need to be applied (e.g.,
transactions in the new branch are marked as spent). We call
this process a block reorganization (or simply a reorg) and it is
a critical part of the fork-choice rules in consensus algorithm.

III. THREAT MODEL

Discrepancies in the fork-handling implementation of
blockchain clients pose risks due to potential exploitation by
malicious actors. The adversaries we consider in this paper aim
to create inconsistent blockchain states (e.g., different branches
being chosen by different clients) in PoW/PoS blockchain
networks. If attacks are successfully mounted, target clients
would have a blockchain state that differs from the rest of the
network. Consequently, services relying on these inconsistent
blockchain states may experience undesired outcomes. For in-
stance, a cryptocurrency exchange receiving blockchain states
from a targeted client might produce incorrect trading results,
or a mining pool might generate a block that is rejected by
the rest of the network, thereby wasting its mining power.

The impact of these attacks depends on the size of the
affected client population in the network. When the target
nodes of an attack constitute the majority of the network, the
adversary can cause global damage, making his/her branch the
canonical chain permanently. One reorg bug we discover in
Ethereum (see §VIII-B) would fall into this category, as the
target client families, Prysm and Teku, together account for
more than 50% of the Ethereum network. In contrast, when
the target nodes are the minority, the created fork (or view
split) would eventually be resolved. However, the temporary
split can offer a window of opportunity for attacks. Several
centralized exchanges (such as Binance or Bithumb) rely on
one-block confirmation [7], [12], meaning a short-lived (e.g.,
1-2 block time) state inconsistency in the target clients can be
exploited to cause localized damage. The chain-tip switching
bug in Bitcoin (see §VIII-A) would be an example of such

local-damage attacks. Or, the temporary fork may persist for an
extended period with certain strategies. The recent balancing
attack strategy [40] that can maintain a long-lived fork (by
balancing two branches for several slots) in Ethereum 2.0 is
one example.

To exploit these discrepancies in fork-handling logic, ad-
versaries with some mining power or staking power should
create and send one or more blocks and/or attestations to the
affected clients. It is a realistic attack capability in modern
PoW/PoS blockchains because rational miners or validators
in practice often use their power to generate blocks with
malicious intent when the expected return is higher than
the benign block reward. For instance, Bitcoin has recently
experienced intentionally created invalid blocks in both the
mainnet and testnet by rational miners [2], and Ethereum
has had more than 200 validators slashed for attesting rule
violations since its transition to PoS in 2022 [6].
Scope. Our main goal is to identify implementation discrep-
ancies in fork-handling logic that can be exploited to cause
view splits in PoW/PoS blockchain networks. Confirming
whether a view split due to a discrepancy is permanent or
temporary is beyond the scope of this work because it depends
on external factors such as the affected client population,
as discussed above. We target the fork-handling logic im-
plementations of PoW/PoS systems, not necessarily covering
the entire blockchain implementations. This makes FORKY
complementary to other, more general blockchain fuzzers [57],
[17], [37].

IV. FORKY OVERVIEW

In this section, we introduce a motivating example that high-
lights a specific challenge in blockchain consensus fuzzing.
Following this, we briefly outline how FORKY tackles this
challenge by employing fork-aware mutation strategies and
fork-diversifying feedback mechanisms.

A. Motivating Example

Blockchain consensus presents unique challenges to fuzzing
due to the interconnected nature of multiple blocks through
persistent state variables. Refer to the motivating example
in Figure 2, which showcases a simplified PoW blockchain
consensus code. This code contains persistent blockchain state
variables and two primary functions for block processing.
Although our system operates across different programming
languages, we have provided this example code in simplified
C style to facilitate easier understanding.

First of all, the global state variables play a crucial role
in storing critical blockchain states, undergoing consistent up-
dates throughout the execution of input blocks. The state vari-
able chain manages the global state of the blockchain, which
encompasses all blocks (in hash format) from the genesis
block, and the reference pointer to the latest block in the main
chain, called the head. Additionally, the variable mempool

holds instances of coin, which represents the cryptocurrency
containing information of the amount and cryptographic proof
of ownership.



B ’ work >  C ’ work

C

B

D
A

Input1
D'

C

B
A

C

C

B
A

B
A

B

B
A

A

A

A

C

B
A

AA C

time

Bug!

DCBA time

BCA time

reorg

reorg

C

B
A

D'

try 
reorg

Input2

Input3

Assumption

block body is invalid

Line 7, 8,
     10, 11

Line 7, 8 Line 7, 8, 10, 
     17, 23, 38

Line 7, 8,
     10, 11

Line 7, 8,
     10, 11

Line 7, 8Line 7, 8,
     10, 11

Line 7, 8, 10, 
     17, 23, 25

Line 7, 8,
     10, 11

Line 7, 8,
     10, 11

Line 7, 8, 10, 
     17, 23, 25

time domain view

covered branches

fork-structure view

1 // Global persistent state variables
2 ChainState chain;  // Chain state variable
3 Mempool mempool;   // Mempool (unspent coins)
4
5 function ProcessBlock(Block b) {
6 ...
7 if (sha256d(b) < chain.target_pow) {
8 if (chain.contains(b.parent)) {
9 chain.add(b); 

10 if (b.cum_work > chain.cum_work) { // Begin Fork choice
11 if (b.parent == chain.head) {
12 chain.head = b;
13 chain.cum_work += b.work;
14 mempool.delete(used_coin);
15 mempool.add(new_coin);
16 ... // Update other persistent state variables
17 } else { Reorganize(b); }
18 } } } }
19 function Reorganize(Block b) {
20 common_ancestor = FindCommonAncestor(chain.head, b);
21 ... // Revert blocks from the current head to common_ancestor
22 for (block in [common_ancestor, ..., b]) {
23 if (chain.Verify(block.header) == VALID) {
24 chain.head = b; ... // Update other persistent state variables
25 if (mempool.contain(used_coin)) {
26 mempool.delete(used_coin);
27 mempool.add(new_coin);
28 } else { bug(); }
29 } } }

Fig. 2. A simplified consensus program (left) and three example inputs (right). We illustrate how a series of blocks in each input lead to different fork-structure
states, resulting in different covered branches of the consensus program.

When a client receives a series of blocks, it processes
each block in sequence. For each block, the function
ProcessBlock() is invoked first, which checks the proof of
work (Line 7) and whether the block extends any block in
the chain (Line 8), Next, a fork-choice operation begins;
cumulative works of b and chain head (i.e., head of the
winning branch) are compared (Line 10). If the new block
extends the current head (Line 11), then the client adds the
block at the end of the winning branch and updates chain,
mempool, and other persistent state variables (Line 12-16).
Otherwise, the Reorganize() function is invoked.

The Reorganize() function rolls back all transactions in
the old branch up to the common ancestor, where the new
branch diverges from. Note that many details are omitted for
brevity; yet, we highlight the multi-level, nested conditions
(Line 23, 25) for the bug() to be triggered (Line 28). This
bug is triggered when the mempool does not have the memory
of the coin to delete (Line 25) and this condition depends on
the global state variables, which could have been altered by
previous block processing (e.g., block body contains duplicate
coins). Note that this simplified bug example is inspired by
one of our own case studies outlined in §VIII-A.

At first glance, satisfying the conditions within each func-
tion to trigger the bug may not appear so challenging. For
instance, by presenting a series of blocks [A, B, C, D′] to the
client (see the example Input1 in Figure 2), one could induce a
fork — notably at the insertion of C (as shown in fork-structure
view) with the assumption that block B’s work exceeds that
of block C. At the submission of D′, the block penetrates Line
17 and triggers reorganization because it tries to extend the
losing chain (Line 11). During the reorganization, D′ is found
to contain a coin (i.e., transaction) that is not present in the
mempool (Line 25) while its header is valid (Line 23), which
in turn triggers the bug (Line 28).

Generating such a precise sequence of inputs with state-of-
the-art fuzzers is, however, far from straightforward. Fuzzers
lacking an understanding of blockchain’s persistent state vari-

ables, like the fork structure, would require a rare chance to
append a block at the end of the losing chain and satisfy the
condition in Line 11 to activate Reorganize(). Furthermore,
penetrating through nested conditions to reach Line 28 would
require a series of uncommon mutations to the input blocks
and result in meaningful changes of the values of state
variables. Taking Input1 as an example, a specific coin can be
added to mempool through state changes (Line 14, 15) during
the reception of C. This coin will trigger the bug after the
reception of D′, if it gets deleted twice during reorganization
(Line 26) and eventually dissatisfying the condition at Line 25.
Although there exists a slim chance to discover a block input
that satisfies all these conditions, it is undesirable to depend
on extremely rare luck through random mutations.

Some might still argue that with enough time, after random
mutations of blocks and transactions, state-of-the-art fuzzers
would ultimately discover inputs that form a specific fork
structure. For instance, Input2 in Figure 2 already triggers
Reorganize() (Line 17), visits Line 25, but not the bug
(Line 28) yet. Through some random mutations of block
D, a fuzzer could potentially find a critical input similar to
Input1. However, we show that reliably testing such a specific
sequence in blockchain is not as straightforward as it appears.
Even if a sequence of input blocks [A, B, C, D] is generated by
randomly attempting various block orders, achieving a reliable,
meaningful test is challenging because code coverage is not
sensitive enough to the changes in the blockchain states. For
instance, consider two block sequences Input2 = [A, B, C, D] and
Input3 = [A, C, B], which achieve the same branch coverage
because both should handle new fork cases and resolve them
through reorganization. Thus, if Input3 is already present in
the test case corpus, the fuzzer would miss the opportunity to
add Input2 to the corpus, despite its importance in covering
significant inputs like Input1.

B. Our Approach
FORKY tackles the highlighted challenges by emphasizing

the analysis of persistent blockchain states, specifically fork



(c) depth-first mode (e) balance-first mode(d) breadth-first mode

Longest
chain head

Leaf block of 
non-canonical chain

Propagated
mutation

Mutate

Remove leaf block

mutated

Structure
-aware
mutation

Branch
-aware
mutation

Select 
mode

Block-level
mutation

Transaction-level
mutation

Add

Select 
parent

Select 
mode

Non-leaf block

(b) remove mode

Original input

(a) low-level mode

M
ut

at
io

n 
pr

op
ag

at
io

n

Branch-level
mutation

f_type = [5, 2, 1, 2, 1]f_type = [5, 1, 2, 1, 1]f_type = [5, 1, 3, 2, 1]

f_type = [3, 2, 1, 1]

f_type = [4, 1, 2, 1]

f_type = [4, 1, 2, 1]

Fig. 3. Overview of mutation operations in FORKY.

structures, during fuzzing processes. With the knowledge of
the fork structure of fuzz inputs, FORKY performs fork state-
aware fuzzing to produce inputs that exhibit a wide range of
blockchain states.

FORKY is a differential fuzzing framework that tests multi-
ple target blockchain clients using the same blockchain inputs
to detect discrepancies in their output blockchain states, such
as view splits. Inputs from the shared corpus are mutated to
trigger potential discrepancies and the notable ones are later
added to the corpus. We highlight the two components that
address the outlined challenges.
1) Fork-aware mutation strategies (§V). FORKY performs
state-aware fuzzing and is able to generate inputs exhibiting
highly diverse blockchain states, enhancing the discovery
of critical fork-handling logic discrepancies. Unlike conven-
tional structure-aware mutations, which randomly generate
blockchain inputs at the transaction and block levels, our
mutation strategies are expressly designed to produce inputs
with forks. These strategies are also designed to promote or
avoid certain types of fork-handling events to render the testing
more effective.
2) Fork-diversifying feedback mechanism (§VI). Our second
contribution is a new feedback mechanism that can explore
unseen fork-handling events. Our feedback complements code
coverage feedback by evaluating the novelty of fork events
tested compared to those previously examined. By selecting
fuzz inputs showcasing new and different fork events for the
corpus, we ensure a broader array of blockchain states are
tested, leading to more efficient and effective testing, like
testing with the critical Input1 in Figure 2.

V. FORK-AWARE MUTATION STRATEGIES

The goal of our fork-aware mutation design is to effectively
adjust fuzz inputs with the knowledge of the fork structure of
the inputs. To achieve this, we propose a number of mutation
strategies for FORKY.

A. Mutating Input Fork Structures

In PoW/PoS blockchains, the fork structure of a blockchain
input represents a tree of blocks, where each block can contain

(a) Rare but interesting forks (b) Ineffective mutation

mutated
child blocks become invalidhead change with reorg

Fig. 4. Example fork mutations we promote (a) and avoid (b).

multiple transactions. Thus, we mutate the input fork structure
at three levels: branch-level, block-level, and transaction-level,
as shown in Figure 3. FORKY first determines the mutation
level (branch, block, or transaction) and then applies the
corresponding mutation operations to the input. Figure 3
showcases five mutation modes ((a)–(e)) that FORKY uses for
making effective fork-structure mutations. Let us present three
main mutation strategies of FORKY and how these mutation
modes are used.
Mutation strategy 1. Mutating with fork structures. This
first strategy describes how FORKY in general mutates the
fork structure of the input to test various fork-handling logics
effectively. Mutating the input at the branch level, FORKY
modifies the fork structure of the input. For example, the
remove mode in Figure 3(b) deletes one block from the
input fork structure. Figure 3(c)–(e) show the three systematic
mutation modes that FORKY uses to add a new block to the
input. The depth-first mode in Figure 3(c) makes the chain
longer by adding a new block to the longest branch of the
tree. The breadth-first mode in Figure 3(d) adds a new block
at non-leaf nodes, creating a new branch. The balance-first
mode in Figure 3(e) is a special, blockchain-specific mode we
introduce to create highly unlikely fork structures with long-
lived competing branches; see more details later in this section.
FORKY uses a combination of these operations to test diverse
fork structures.

Notably, FORKY favors creating the fork structure that has
not been tested before. FORKY evaluates whether the fork
structure of the new mutated input has a new fork or overlaps
with existing fork structures before conducting the mutation.
For this, FORKY checks the isomorphism of the unordered
rooted tree of the mutated inputs. To be more specific, FORKY
assigns the tree isomorphism code [55] of the root block of the
mutated input (denoted as ‘f type’ in the Figure 3) and checks
whether it is a new fork structure, which can be computed in
linear time [28], [1]. This way, the mutation can continuously
guide the fuzzer to test unseen types of fork structure and thus
potentially unseen fork-handling cases.
Mutation strategy 2. Promoting rare fork structures. The
above mutation strategy above already enables testing of
inputs with various forms of fork structures. Yet, it would
require a significant amount of fuzz energy to test inputs with
certain types of fork structures. A blockchain input with long-
lived competing branches is one such example. As shown
in Figure 4(a), two long-lived branches of blocks compete
as they grow over time, trigger unique fork-handling logics;
e.g., overwriting and rolling back may block and transaction
variables repeatedly over multiple fork-handling events. A
mere fork-aware mutation (e.g., Figure 3(c) and (d)) may not



be able to create such long-lived competition between branches
effectively. For this, we introduce a special mutation operation,
the balance-first mode in Figure 3(e), that explicitly promotes
the competition between branches by empowering the non-
canonical yet long-lived branch. This mode is selected with a
certain probability, offering a chance to create highly unlikely
fork structures with long-lived competing branches.
Mutation strategy 3. Avoiding ineffective mutations. When
the mutation is conducted at the block or transaction level,
the mutation operation may affect the validity of the blocks
or transactions in the fork structure. While this is useful for
testing the robustness of the target client in general, it may
lead to ineffective fuzzing in the blockchain context. See
Figure 4(b) as an example, where a single block mutation
that makes the block invalid may significantly reduce the
efficacy of testing because the mutation invalidates many other
blocks in the fork structure of blocks. To handle this, FORKY
propagates the mutation operations according to the fork-
structure view of the blocks in the input. Figure 3(a) shows
the low-level mode that propagates the mutation operations in
the downward order of blocks (i.e., from parent to all child
blocks) to avoid invalidating many blocks in the fork structure.

B. Mutation for PoS: Votes and Times
There exist two more dimensions in blockchain inputs that

have been introduced by the Proof-of-Stake (PoS) consensus
algorithms: votes and arrival times. In PoS systems, each
validator node can cast explicit votes (as known as attestations
in Ethereum) to blocks that it considers valid and more
appropriate to be included in the main chain. And the precise
arrival time of each block and vote is also critical in PoS
because it can affect the weight of the block in the fork-
choice rules [4]. Therefore, for the same given fuzz input,
mutating minute timing information and altering few votes in
PoS systems can create various fork-handling events.
Mutation strategy 4. Voting-and-timing mutation. FORKY
mutates several fields of the votes (attestations in Ethereum)
messages. For example, FORKY randomly changes the target
block of the vote at each mutation operation. Also, the arrival
time of each vote is mutated to test scenarios where some
votes arrive late or early, which is critical in PoS systems.

VI. FORK-DIVERSIFYING FEEDBACK

FORKY’s fork-aware mutation strategies enhance its ability
to test various mutations of block fork structures. However,
the new mutation strategies alone are insufficient to test many
critical fork structures because the code coverage feedback
is insensitive to blockchain state changes, as demonstrated
in §IV-A. In this section, we introduce a novel feedback
mechanism based on fork structures designed to overcome the
shortcomings of traditional code coverage feedback. This new
mechanism is intended to complement, rather than replace, the
existing code coverage-based feedback.

A. High-level Intuition
Recall from §IV-A that consensus implementations in

blockchain are stateful, thus discerning interesting inputs

such as Input2 in Figure 2 is hard due to the insensitivity
of traditional code coverage metrics. Losing Input2 in the
corpus would significantly reduce the chance of finding the
discrepancy (which can be triggered with Input1).

Addressing this challenge would require FORKY to continu-
ously explore more diverse blockchain states or fork structures
in addition to finding new code paths. This additional feedback
mechanism can help FORKY to find fuzz inputs with more
diverse fork structures even when they do not necessarily
increase code coverage. In the PoW and PoS blockchain
contexts, we characterize this additional feedback as fork-
diversifying feedback.

B. New Feedback

We propose an additional fork-diversifying feedback mech-
anism to complement code coverage. We leverage our domain
knowledge to quantitatively define the types of fork-handling
events and use these to add feedback on top of code coverage.
With this additional feedback and the knowledge of fork types,
FORKY finds the inputs that test new fork-handling events and
eventually test previously uncovered code paths more effec-
tively. We empirically find that the fork-diversifying feedback
shows noticeably faster discrepancy detection performance in
both Bitcoin and Ethereum.
Types of forks. We quantify fork types within the input to
enable continuous generation of new fork varieties. This ap-
proach aims to examine previously untested fork-handling log-
ics. Our quantification centers on how a fork in a blockchain
input is resolved (or how blocks are reorganized) by the
consensus algorithm. Specifically, a reorganization represents
a form of fork-handling operation, requiring the rollback (or
restoration) of many transactions and blocks. By focusing on
fork reorganizations, we can quantitatively assess the diver-
sity of fork-handling logics. Notably, different reorganization
strategies have recently been exploited in attacks against
Bitcoin and Ethereum, as evidenced in literature [39], [40],
[41], [42], [44], [47], [60]. By designing a quantitative metric
of fork reorganization, we can expect to test a broader range of
fork reorganization events, thereby uncovering more potential
discrepancies in the fork-handling implementations.

To that end, we define reorganization type in the context
of the environment and complexity in which each reorgani-
zation happens. For example, some reorg events can occur
between long, competing branches while some may involve
a single block reorganization. Moreover, the replacing block
can be in a slot later than the replaced block (i.e., ex-post
reorgs [47]) or the replacing block can be in the earlier slot
(i.e., ex-ante reorgs [47]). We define a reorganization type
to reflect these different styles of reorganization events with
varying complexities. A unique reorganization type is defined
as the relationship between two branches, critical condition for
reorganizations (e.g., block order, timing, voting), number of
reorganized blocks, etc.

Let us present the reorganization type definition for
Ethereum first because reorganization events in Ethereum’s
PoS consensus algorithm are more complex than those in



reorg_typeeth = {#replacing blocks, #replaced blocks,
      size of replacing branch, 
      size of replaced branch, 
      weight gap exists (bool), 
      score boosted (bool), 
      epoch gap, n-th reorgs within input}

Shape of the reorg event

Cause of reorg event

Other reorg event properties

reorg_typebtc = {#replacing blks, #replaced blks,
      n-th reorgs within input}

Shape and cause of the reorg event

(a) Reorg type for Ethereum PoS consensus

Other reorg event property

(b) Reorg type for Bitcoin PoW consensus

reor
g1

reorg2

ü reorg1’s type = {2, 1, 3, 1, 1, 0, 0, 1}

ü reorg2’s type = {3, 2, 5, 3, 1, 1, 0, 2}

head change w/o reorg

head change with reorg

votes for blocks

delayed block reception

(c) A blockchain input that triggers two reorg events (see the two
      different reorg types)

Fig. 5. The reorg type for (a) Bitcoin PoW and (b) Ethereum PoS consensus
algorithm, and (c) examples of reorg type in Ethereum.

Bitcoin’s PoW consensus algorithm. The Ethereum reorgani-
zation type in Figure 5(a) contains eight elements. The first
four (i.e., the number of replacing/replaced blocks and
the size of replacing/replaced branch) provide insights
into the characteristics of the corresponding reorganization
event (e.g., 2-slot size ex-ante reorganization [47]). Note that
the size of replacing/ replaced branch is measured
by the difference between the slot number of each head of
the branch and the slot number of the common ancestor of
the branches. The next two elements (i.e., the presence of a
weight gap and the occurrence of a score boost) describe the
underlying cause of the reorganization; e.g., when neither a
weight gap nor a score boost is observed in a reorganization
event, it implies that the reorganization was triggered due to
a tie-break rule. The next epoch gap indicates the number
of epochs a reorganization event spans; e.g., it has a non-
zero value when a fork straddles two or more consecutive
epochs. The inclusion of this element is important because
recent attacks [5] have shown that some attacks can occur
at the boundary of epochs. Finally, to help promote long-
lived competition, the type includes the counter for how many
reorgs occur within a given test case to differentiate multiple
reorganization events in a single test case. Reorganization
events in Bitcoin’s PoW consensus algorithm are relatively
simpler than those of Ethereum. Figure 5(b) illustrates a
simpler reorganization type of Bitcoin.

We provide an example of reorganization types in Ethereum
in Figure 5(c). This specific example input triggers two re-
organization events; see two red-striped arrows. While these
two reorganization events look similar and the second does
not increase code coverage, we assign different reorganization
types to them. According to our reorganization type definition
for Ethereum found in Figure 5(a), the two types differ in

several elements (see the figure for details) and thus our fuzzer
can potentially store this input as a new interesting seed in the
corpus.

Finally, let us explain how our fork-diversifying feedback
mechanism adds novel fork inputs to the corpus. After mu-
tating and testing a blockchain input, FORKY evaluates it to
compute reorganization types present in the input. If an input
exhibits a reorganization type that has not been previously
encountered (when compared to the record FORKY maintains
throughout the fuzzing campaign), it is added to the corpus.
Note that this feedback mechanism does not replace the
existing code coverage feedback; instead, it enriches it by
adding more interesting inputs to the corpus. This feedback
mechanism enhances the likelihood of uncovering yet-untested
discrepancies in the implementations of various fork-handling
logics.

VII. IMPLEMENTATION AND EVALUATION

We present our implementation of FORKY for Bitcoin and
Ethereum clients (§VII-A) and their performance (§VII-B).

A. Implementation

With FORKY, we test Bitcoin and Ethereum — the two
largest (in terms of market capitalization) PoW and PoS
blockchain projects, respectively. Since their PoW and PoS
consensus algorithms are incompatible with each other, we
test them separately with two fuzzers: FORKY-Bitcoin and
FORKY-Ethereum. We open source both implementations [3].

FORKY is built on top of the libFuzzer library [35] using
C++ (for FORKY-Bitcoin) and Rust (for FORKY-Ethereum).
Particularly, we base our implementation on code coverage
feedback, corpus maintenance, and seed input selection from
the default libFuzzer framework and further improve it with
our fork-aware mutation and fork-diversifying feedback. All
Bitcoin clients run in the regression test mode (i.e., regtest).
For FORKY-Ethereum, we build on top of the beacon-fuzz [48]
and use the spec test environment [24] that has been used for
executing test cases.

For FORKY-Bitcoin, we test a total of 30 Bitcoin clients
across four client families. This includes Bitcoin Core (C++)
from 0.15.0 to 27.0 (26 versions); Bitcoin Knots (C++) 22.0
and 23.0 (2 versions); btcd (Go) 22.1, 23.0, and 23.1 (3
versions); and bcoin (Javascript) 2.0.0 to 2.2.0 (3 versions). For
FORKY-Ethereum, we test a total of four Ethereum consensus2

clients across four client families. This includes Lighthouse
3.5.1 (Rust); Prysm 4.0.7 (Go); Teku 23.6.2 (Java); and
Nimbus 23.5.1 (Nim).

B. Evaluation

We evaluate how effective FORKY’s main features, i.e.,
the fork-aware mutation and fork-diversifying feedback mech-
anism, are at finding discrepancies in fork-handling logic.
For this, we compare the proposed full implementation of

2After switching to PoS in September 2022, Ethereum’s execution clients,
such as Geth, no longer handle consensus logic and thus execution clients are
out of the scope of this work.



0 100k 200k 300k 400k 500k
fuzzing iteration

0

1

2

3

4
# 

of
 d

isc
re

pa
nc

ie
s

 fo
un

d

0 10k 20k 30k 40k 50k
fuzzing iteration

0
1
2
3
4
5

# 
of

 d
isc

re
pa

nc
ie

s
 fo

un
d

(a) Bitcoin (b) Ethereum

Forky baseline+mutation baseline+feedback baseline

Fig. 6. Performance of FORKY and its variants.

FORKY with several variants of FORKY, which are inferior
implementations of FORKY. We show that the FORKY’s core
features are indeed effective at finding discrepancies.
• ‘baseline’ denotes a coverage-guided structure-aware fuzzer,
• ‘baseline+mutation’ denotes a coverage-guided structure-

aware fuzzer with the fork-aware mutation,
• ‘baseline+feedback’ denotes a coverage-guided structure-

aware fuzzer with the fork-diversifying feedback mecha-
nism, and

• ‘Forky’ (i.e., ‘baseline+mutation+feedback’) denotes a
coverage-guided structure-aware fuzzer with the fork-aware
mutation and fork-diversifying feedback.
1) Findings: Table I lists the discrepancies detected by

FORKY. It identifies six previously unknown discrepancies,
two instances of rediscovered known bugs, and one variant of
an existing bug. In Bitcoin, one discrepancy (#4) could lead to
a view split in bcoin. One known bug (#2) and a new variant
of a known bug (#3) are detected. Also, one unknown bug (#1)
could disrupt chain growth by inhibiting the appending of new
blocks. In Ethereum, FORKY detects discrepancies in the tick
operation (#6) and the future attestation processing logic (#5-
8), which could cause view splits among Ethereum clients.
The discrepancy (#9) can cause resource exhaustion due to
orphan threads. The list also includes bugs in the standardized
test suites (i.e., Ethereum’s spec tests). This suggests that the
current testing environment for Ethereum consensus clients
is unsatisfactory to test the correctness of the fork-resolution
logic in these Ethereum clients.

Fixing these discrepancies requires different levels of effort.
The discrepancies (#1,3) in Bitcoin Core can be mitigated
by adding additional incorrect block verification [10]. The
discrepancy (#2) in Bitcoin Core can be fixed by adding
code for SegWit handling [36]. The bcoin bug (#4) can be
mitigated by reverting the chain tip after block body validation
if the validation fails. The orphan thread issue (#9) in Nimbus
can be prevented by adding 2-3 lines of code for exception
handling. The remaining discrepancies in Ethereum (#5-8)
require more substantial changes to the clients’ fork-resolution
logic because they stem from ambiguous specifications. For
example, Prysm and Teku would have to change their core data
structure to address the conflicting future attestations (#7).

2) Performance: Figure 6 shows the number of discrep-
ancies found as FORKY and three variants progress. In both
Figure 6(a) and Figure 6(b), we clearly see that the full FORKY
fuzzer finds the discrepancies faster than all other inferior
versions of FORKY, showing the overall effectiveness of

0 50k 100k 150k 200k 250k
fuzzing iteration

0.0

0.5

1.0

1.5

Av
er

ag
e 

nu
m

be
r o

f
 re

or
gs

 p
er

 te
st

0 20k 40k 60k 80k 100k
fuzzing iteration

0
2
4
6
8

10
12

Av
er

ag
e 

nu
m

be
r o

f
 re

or
gs

 p
er

 te
st

(a) Bitcoin (b) Ethereum

Forky baseline+mutation baseline+feedback baseline

Fig. 7. Numbers of reorgs triggered per test case with FORKY and its variants.

FORKY. In Figure 6(a), the ‘baseline+mutation’ strategy also
finds all Bitcoin discrepancies within 500K iterations (about 12
hours of execution) but it took longer to find all discrepancies
than FORKY. Figure 6(b) shows that the ‘baseline+mutation’
fails to find one discrepancy (i.e., #7 in §VIII-B) within 50K
iterations (about 166 hours of execution). We stop at 100K
iterations but it still does not find this discrepancy. In both
Bitcoin and Ethereum, the ‘baseline+feedback’ fuzzers show
no improvement over the ‘baseline’ fuzzers, showing that the
fork-diversifying feedback alone would not be useful.

3) Number of Reorgs: To better understand the effective-
ness of FORKY’s fork-aware mutation and fork-diversifying
feedback, we measure the number of reorgs per test case
during the fuzzing campaigns. Figure 7 shows that FORKY
indeed generates more reorgs than all other variants. Also, the
‘baseline+mutation’ fuzzers generate much more reorgs than
the ‘baseline’ fuzzers, indicating that the fork-aware mutation
is indeed the key to generating more reorgs. Each line in
Figure 7 represents the moving average (with a window size
of 2,000) of the number of reorgs.

The effectiveness of the fork-diversifying feedback in gen-
erating more reorgs though is not universal across Bitcoin and
Ethereum, and it appears to be dependent on the existence
of the fork-aware mutation in the fuzzing campaign. In our
Bitcoin testing, the fork-diversifying feedback does not gen-
erate any noticeably more reorgs than the strategies without
the feedback. This is because the reorg types in Bitcoin have
a much lower dimension of freedom than those in Ethereum;
see Figure 5(a) and Figure 5(b) for comparison. The limited
dimensions of freedom in Bitcoin reorg types make the tradi-
tional coverage feedback dominate our new feedback. Yet, the
fork-diversifying feedback shows a significant impact on the
number of reorgs in Ethereum, especially when it is used with
the fork-aware mutation. The effectiveness of the feedback
reduces to none though when it is used without the fork-aware
mutation (see the ‘baseline+feedback’ and ‘baseline’ lines),
which confirms that the fork-diversifying feedback alone is
not useful.

Notice the number of reorgs in Bitcoin is generally lower
than that in Ethereum. This is because the PoW consensus
algorithm in Bitcoin is much simpler than the PoS consensus
algorithm in Ethereum, and thus it is less likely to trigger
reorgs in Bitcoin.

4) Diversity of Reorgs: We measure whether the fork-
diversifying feedback increases the diversity of reorg types
in test cases. We use the reorg type definitions in Figure 5(a)



TABLE I
DISCREPANCIES FOUND BY FORKY.

# Platforms Clients Implications Descriptions Known Status
1 *

Bitcoin

Bitcoin Core denial-of-service Incorrectly handled reorg failure repeats every block arrival, preventing its verification No Reported**

2 Bitcoin Core view split* Clients reject blocks containing SegWit data in regression test mode Yes [8] N/A
3 Bitcoin Core crash, double-spending Verifying a double-spending block results in a valid confirmation or a crash Yes [54] N/A
4 bcoin view split* Inconsistent block verification selects different branches after a reorg No Confirmed**

5

Ethereum

Prysm view split* Prysm spec test fails to handle future attestations No Confirmed [30]
6 Prysm view split* Prysm spec test fails to correctly handle multiple steps at a slot border No Confirmed [29]
7 Prysm, Teku view split* Prysm and Teku handle conflicting future attestations in a non-deterministic way No Confirmed [33]
8 Teku view split* Teku’s spec test fails to handle some future attestations No Reported [32]
9 Nimbus orphan thread Nimbus’ spec test may face resource exhaustion when multiple test cases fail No Reported [31]
* When exploited, a view split may lead to a permanent chain split or a temporary one that gives adversaries a window of opportunity to launch attacks; see §III.
** Directly reported to developers.

(a)

0 5 10 15 20 25
# replacing blocks

0

5

10

15

20

25

#
 
r
e
p
l
a
c
e
d
 
b
l
o
c
k
s

0 5 10 15 20 25
# replacing blocks

0

5

10

15

20

25

#
 
r
e
p
l
a
c
e
d
 
b
l
o
c
k
s

(b)

0 10 20 30 40 50 60 70 80
size of replacing branch

0
10
20
30
40
50
60
70
80

s
i
z
e
 
o
f
 
r
e
p
l
a
c
e
d
 
b
r
a
n
c
h

0 10 20 30 40 50 60 70 80
size of replacing branch

0
10
20
30
40
50
60
70
80

s
i
z
e
 
o
f
 
r
e
p
l
a
c
e
d
 
b
r
a
n
c
h

Forky w/o fork-diversifying feedback
('baseline+mutation')

Forky

Fig. 8. Diversity of tested reorgs with FORKY and ‘baseline+mutation’ in
Ethereum.

to analyze how diverse the tested reorg types are. Note that,
when it comes to the diversity of reorg types, we focus on
the fuzzing on Ethereum, not Bitcoin, since the effect of the
fork-diversifying feedback is shown to be marginal in Bitcoin.

Figure 8 shows the diversity of several elements in the reorg
type that are used in feedback during fuzzing. The results on
the left-hand side of the figure are from a fuzzing campaign
with the ‘baseline+mutation’ fuzzers while the results on the
right-hand side are from FORKY (thus, including the fork-
diversifying feedback). Figure 8(a) and Figure 8(b) show
how (#replacing blocks, #replaced blocks) and (size
of replacing branch, size of replaced branch) are
distributed in all the feedback used in each fuzzing campaign.
The full ‘Forky’ fuzzers generate a more diverse set of reorgs
(i.e., covering more combinations of these two features) than
the one without the feedback.

5) Quantitative Comparison with Other Tools: Last, we
provide a quantitative comparison between FORKY and other
existing blockchain fuzzers, Fluffy [57], and LOKI [37]. We
emphasize that a comprehensive comparison between these
fuzzers with distinct scopes and specialized targets is inher-
ently challenging. Yet, we offer our best effort for this com-
parison with several caveats attached. In particular to compare
FORKY with Fluffy [57], and LOKI [37], we re-implement
FORKY for Ethereum 1.0 (i.e., PoW Ethereum before 2022)
using go-fuzz [56] on go-ethereum 1.9.24 (Geth) [53] and
denote it as FORKY-Eth1.0 for this particular comparison.

We run FORKY-Eth1.0, Fluffy [57], and LOKI [37] for 6

TABLE II
PERFORMANCE COMPARISON BETWEEN FORKY, FLUFFY, AND LOKI.

FORKY-Eth1.0* Fluffy [57] LOKI [37]

statement
coverage

core 2,089 1,512 1,890
trie 664 463 397
rlp 558 424 669
core/vm 126 1,061 107
p2p 33 91 2,135

unique reorg types 212 N/A 0**

* FORKY re-implemented for PoW-based Ethereum 1.0 for comparison.
** May increase to 1 depending on the block time setting.

hours3. Table II compares the performance of the three fuzzers
in terms of statement coverage and the number of unique
reorg types. We select five packages in Ethereum 1.0 and
measure the statement coverage of each fuzzer to highlight
the relative strengths of FORKY-Eth1.0 and the other fuzzers.
FORKY-Eth1.0 achieves much higher coverage in the core

and trie packages compared to Fluffy and LOKI. This is a
clear indication of the relative strengths of FORKY in testing
the central components of the blockchain system including
block verification and fork-handling logic. Fluffy [57] tops
in the core/vm package with extensive fuzz testing on EVM
bytecode. LOKI [37] shows a substantially high coverage in
the p2p and rlp (a message serialization method) packages
because it performs extensive testing on peer-to-peer network-
ing and serialization methods.

FORKY-Eth1.0 tests 212 unique reorganization types while
LOKI and Fluffy do not test any unique reorg types. Fluffy
is shown to be totally incapable of triggering any reorgs
because it uses a block data structure only as a container
for transactions. While LOKI triggers 0 unique reorg types
in this fair comparison (with the same Ethereum block time
setting), we find that LOKI can often trigger one (but not
more) unique reorg type when the block time is set smaller
than the default 12 seconds. The tested reorg type in LOKI is
yet limited to a simplest reorg type where one block replaces
another due to network delays. This quantitative comparison
shows that FORKY is clearly more effective at testing fork-
handling logic in blockchains than the existing state-of-the-
art blockchain fuzzers. This shows that FORKY’s superior
capability of testing fork-handling logic complements other
blockchain fuzzers, ensuring thorough testing across all critical
packages. We attach the qualitative comparison with other
fuzzers (including Tyr [17]) in §X.

3Tyr [17] has not released its code, rendering comparison challenging.



Blockchain input 
in time domain

time

Logical fork structure

DB CA

Bitcoin Core
Bitcoin Knots

btcd
bcoin

process
input

C

B

D
A

output
chain view

Split views

bcoin
Block D has a valid header 

but an invalid body

C

B

D
A

C

B

D
A

Legends
A Block A                     A is parent of B

Main chain              Rejected block D
A B

D

All other clients
view split occur 

Fig. 9. Case 1 (#4): All bcoin clients switch their main chain to [A← C]
when the header of block D is validated, and do not switch it back when the
rest of block D data turns out to be invalid. All other clients do not switch
their main chain until block D is fully verified.

VIII. CASE STUDIES

We present one case study in Bitcoin (§VIII-A) and another
in Ethereum (§VIII-B). We end this section with a discussion
on the implications of our findings in §IX-B.

A. Case 1: Reorganization Bug in Bitcoin (#4)

With FORKY, we have found a semantic bug that causes
every bcoin client we test (version 2.0.0, 2.1.0, and 2.2.0) to
have their main chains different from the ones in all other
Bitcoin clients. The root cause of this discrepancy is a subtle,
inconsistent interaction between block verification and chain-
head management in different Bitcoin clients. Bcoin builds
the longest chain of blocks (i.e., the main chain) based on the
validity of their headers only while other clients verify the
entire block (header and transactions) before adding it to the
main chain. This shows that FORKY successfully generates a
test case with a fork structure that triggers this bug in certain
bcoin clients while the state-of-the-art differential testing tools
fail to do so. We illustrate detailed steps of this bug in Figure 9.

B. Case 2: Data Structure Bug in Ethereum (#7)

FORKY also discovers a subtle bug in Ethereum’s fork-
choice logic that causes non-deterministic fork-choice results
in Prysm and Teku clients when handling future attestations.
Future attestations occur when attestations arrive early from
future slots due to local time differences or network delays.
Figure 10 illustrates the impact of this bug. When this bug
is triggered, Prysm and Teku produce non-deterministic fork-
choice results while Lighthouse and Nimbus produce deter-
ministic results.

The root cause of this discrepancy is the different data
structures used in these clients to handle future attestations.
The map data structure (used in Prysm and Teku) does not
guarantee the order of arrived future attestations while queues
(used in Lighthouse and Nimbus) guarantees their submission
order. The problem arise from the fact that the Ethereum
consensus specification does not offer a precise interpretation
for handling future attestations.

IX. DISCUSSION

A. Limitations of FORKY

While FORKY has shown its effectiveness in testing fork-
handling logic in Bitcoin and Ethereum, it still has a limited

Blockchain input 
in time domain

time

Logical fork structure

Lighthouse
Prysm
Teku

Nimbus

process
input

output
chain view

Split views

Prysm, Teku

Legends
A Block A                               A is parent of B

Main chain                         Slot boundary             
Vote (attestation)                      Voting to A
Early arrived vote X 

A B

Lighthouse, Nimbus

view split may occur

X

Double-voting attestation X and Y 
from the same validator

A

C

B
A Early 

arrived

C

B
A

C

B
A

C

B
A

Non-deterministic fork-choice

or

A CB X Y

X
YY

X

Fig. 10. Case 2 (#7): When double-voting attestations X and Y from a
same validator arrive earlier, clients that use queue switch to [A ← C].
Prysm and Teku produce non-deterministic fork-choice results because they
use map while others use queue for handling future attestations.

scope of fuzzing capability, features, and target blockchain
systems. We discuss these limitations in this section.
Limited fuzzing capability. There are a few fork resolution
scenarios we have not covered in FORKY mainly due to the
practical resource limitations. For example, discrepancies that
are triggered only when a fork straddles two or more epochs
are not covered in FORKY because it would require too many
blocks in an input. We also have used only up to 128 validators
for a committee for each epoch because we cannot simulate
all 890K validators for our tests due to resource constraints.
Limited features. We focus on detecting errors in consensus
algorithms and particularly their fork resolution mechanisms.
Our tool may, therefore, miss errors in other parts of the
blockchain client implementations. For example, FORKY is
not designed to detect bugs in the crypto libraries, peer-to-
peer network protocol implementations, data parsing, etc.
Limited experimentations on other blockchains. We have
implemented and tested FORKY on Bitcoin and Ethereum
2.0 and Ethereum 1.0 the model consensus algorithms for
many other PoW/PoS blockchains. Therefore, many copycats
of Bitcoin and Ethereum, such as Litecoin [34] and Doge-
coin [52], would require near-zero effort for FORKY to be
applied. Different PoW and PoS consensus algorithms may
require custom changes to FORKY. FORKY’s design, however,
is based on the general principles of PoW and PoS consensus
algorithms and thus we believe that FORKY can be applied to
other blockchains without forklift changes. To be specific, our
fork-centric fuzzing strategies may need to be re-implemented
based on the domain knowledge of each target blockchain
system (e.g., re-defining the structure of block, transaction, or
consensus messages) while the core of FORKY can be reused.

B. Implications and Responses

Many findings from FORKY have been acknowledged by
the developers. For example, the bcoin developers have ac-
knowledged the bug (§VIII-A) through private communication.
The Prysm and Teku teams have also acknowledged that the
handling of future attestations in Prysm (#5) is different from
the two other clients. Some have not been acknowledged yet
due to the lack of timely responses from the developers.

So far, developers of the affected clients tend to refuse to
fix the discrepancies as they consider them to be not critical
or exploitable at present. Two most cited reasons are (1) the
discrepancies require someone to invest a significant amount



of PoW power to craft a malicious input to trigger them, or (2)
the discrepancies are triggered only when validators are willing
to be slashed (e.g., by sending double-voting attestations).

Yet, we argue that these discrepancies are better to be fixed,
regardless of their exploitability at present, for two reasons.
First, it is now in the realm of possibility that some adversaries
with mining or staking power would risk their power to cause
these discrepancies. There is a growing number of incidents
where rational miners or validators are willing to risk their
PoW or PoS power to gain other sources of profit, such as
exploiting MEV opportunities [21]; e.g., some Bitcoin miners
intentionally created invalid blocks in both the mainnet and
testnet [2], and some (more than 200 so far) validators have
been slashed for attestation rule violations [6]. Bugs like Case
1 and Case 2 in this section could be triggered by such miners
or validators.

Second, perhaps more fundamentally, a latent bug that is
unexploitable at present because of external constraints (e.g.,
particular input sanitization placed currently) is essentially a
latent bug that may be exploitable in the future when the
codebase of the affected clients propagates to other projects
or when the constraints are relaxed due to code changes.
Blockchain codebases typically have regular updates and are
often used as a reference implementation for other blockchain
projects [46], [59].

C. Testing Framework in Ethereum

One unexpected result from our evaluation is that there
are not significantly many bugs in Ethereum’s fork resolution
mechanism compared to that in Bitcoin, even though the
former is much more complex than the latter. We believe that
this is because Ethereum has practiced more systematic testing
than Bitcoin.
Ethereum’s official implementation spec. Bitcoin does
not have a formal specification of their client implementa-
tions [11]. Instead, they have a reference implementation (i.e.,
Bitcoin Core) that is considered as the de facto specification.
Ethereum, in contrast, has improved the state-of-the-art by
providing an official specification of its client implementa-
tions, written in Python, called PySpec [25]. When third-
party developers implement their own Ethereum clients, they
refer to this implementation spec to make sure that their
implementations are consistent with the official one.
Spec test. In addition to having an official implementation
spec, Ethereum has developed a systematic testing suit, called
spec test [24], to test its diverse client implementations. The
spec test is a collection of test cases that are designed to test
the client implementations. While the spec test is a great tool
for testing Ethereum clients, it supports only manual testing.
Our contribution with FORKY provides useful complementary
tools to the spec test by automating the testing process and
diversifying the testing scenarios.

X. RELATED WORK

We discuss related work to FORKY, the first fork state-aware
differential fuzzing for PoW and PoS blockchains.

TABLE III
COMPARATIVE ANALYSIS OF FORKY, TYR, LOKI, AND FLUFFY.

FORKY Tyr [17] LOKI [37] Fluffy [57]

Differential testing Yes No No Yes
Feedback on code coverage Yes Yes No Yes
State-awareness Yes (focusing on forks) Limited* Coarse-grained** No
Linear chain structure-aware Yes Yes No Yes
Fork structure-aware Yes No No No
Testing of forks Comprehensive Occasional Occasional No
Ability to test rare forks Yes No No No
Supported protocol types PoW/PoS PoW/BFT*** PoW/BFT PoW
* States are confined to selected state variables: the number of elected leaders, local transaction pool, local

blockchain data, and the height of the chain.
** States are defined by the observed consensus message types, resulting in coarse-grained client states.
*** BFT stands for Byzantine Fault Tolerant protocols, such as PBFT [15], DiemBFT [22].

Fuzzing blockchain systems. Researchers have applied
fuzzing to find bugs in the blockchains. Bitcoin Core devel-
opers implement a grey-box fuzzer [9], [27] and participate
in an open-source fuzzing framework called OSS-Fuzz by
Google [43]. Ethereum clients have applied fuzzing on a
functional level with structure-aware inputs [45], [50], [20],
[51]. Some of the earliest studies are EVMLab [23] and
EVMFuzzer [26], which use differential fuzzing to find dis-
crepancies in the EVM states between different Ethereum
clients. A work Chronos [16] focuses on finding timeout bugs
by fuzzing the deep-priority transient delay in the distributed
system. While these efforts may find certain types of bugs,
such as crash and memory corruption, they lack a specific
focus on finding semantic bugs in consensus implementations
by testing fork-handling logic.
Fuzzing blockchain consensus. A few recent studies, such
as Tyr [17], LOKI [37], and Fluffy [57], try to find bugs in
blockchain consensus implementations. While these fuzzing
tools are shown to be effective, they are different from FORKY
in several aspects, as illustrated by our qualitative comparison
in Table III. In terms of fuzzing types, FORKY and Fluffy are
differential testing tools whereas Tyr and LOKI test individual
clients. Also, FORKY, Tyr, and Fluffy use code coverage
feedback, whereas LOKI does not. Additionally, the types of
blockchain protocols supported vary among these tools. Tyr
and Fluffy are only capable of recognizing the linear chain
structures (i.e., transactions and blocks form a linear chain)
but unaware of how chains form forks and how forks are
resolved. Therefore, Tyr and LOKI can only occasionally test
forks, relying on rare lucky circumstances (See Table II).

XI. CONCLUSION

One unique feature of blockchain consensus algorithms is
resolving conflicting inputs according to clearly defined fork-
choice rules. Testing this highly critical feature in multiple
client implementations has been a challenge in existing work.
With our tool FORKY, we show that automated testing of fork-
handling logic is feasible and effective in finding implemen-
tation discrepancies in PoW and PoS blockchains.

ACKNOWLEDGMENT

This research was supported by the MSIT (Ministry of Sci-
ence and ICT), Korea, under the ITRC (Information Technol-
ogy Research Center) support program (IITP-2025-RS-2023-
00259099) supervised by the IITP (Institute for Information
& Communications Technology Planning & Evaluation).



REFERENCES

[1] A. Abboud, A. Backurs, T. D. Hansen, V. Vassilevska Williams, and
O. Zamir, “Subtree isomorphism revisited,” ACM Transactions on Algo-
rithms (TALG), vol. 14, no. 3, pp. 1–23, 2018.

[2] O. Adejumo, “Marathon Digital confirms it mined invalid Bitcoin block,”
CryptoSlate, 2023, https://cryptoslate.com/marathon-digital-confirms-
mining-invalid-bitcoin-block/.

[3] anonymous authors, “Forky repository,” https://github.com/NetSP-
KAIST/forky/releases/tag/v0.0.1-alpha.1, 2024.

[4] A. Asgaonkar, “Proposer LMD Score Boosting,” https://github.com/
ethereum/consensus-specs/pull/2730, 2021.

[5] ——, “Fork choice bugfix disclosure,” https://notes.ethereum.org/
@djrtwo/2023-fork-choice-reorg-disclosure, 2023.

[6] beaconcha.in, “Slashed validators,” https://beaconcha.in/validators/
slashings, 2022.

[7] Binance, “Binance reduces the number of confirmations required,”
https://www.binance.com/en/support/announcement/binance-reduces-
the-number-of-confirmations-required-for-deposits-withdrawals-on-
btc-and-eth-networks-360030775291, 2019.

[8] Bitcoin Core, “Todo: fix the code to support seg-
wit block,” https://github.com/bitcoin/bitcoin/blob/
8b67698420e23db20cfbb9228ca01a68c8ddc10c/src/test/test bitcoin.
cpp#L45.

[9] ——, “Fuzz-testing Bitcoin Core,” 2016, https://github.com/bitcoin/
bitcoin/blob/v0.14.0rc1/doc/fuzzing.md.

[10] ——, “CVE-2018-17144 Full Disclosure,” 2018, https://bitcoincore.org/
en/2018/09/20/notice.

[11] Bitcoin.org, “Bitcoin Reference,” 2009, https://developer.bitcoin.org/
reference/intro.html.

[12] Bithumb, “Bithumb deposit and withdrawl status,” https://en.bithumb.
com/coin inout/compare price, 2015.

[13] V. Buterin, “Ethereum white paper: A next-generation smart contract
and decentralized application platform,” Ethereum White Paper, 2014.

[14] V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan,
J. Sin, Y. Wang, and Y. X. Zhang, “Combining GHOST and Casper,”
2020.

[15] M. Castro, B. Liskov et al., “Practical Byzantine Fault Tolerance,” in
Proc. USENIX OSDI, 1999.

[16] Y. Chen, F. Ma, Y. Zhou, M. Gu, Q. Liao, and Y. Jiang, “Chronos:
Finding Timeout Bugs in Practical Distributed Systems by Deep-Priority
Fuzzing with Transient Delay,” in Proc. IEEE S&P, 2024.

[17] Y. Chen, F. Ma, Y. Zhou, Y. Jiang, T. Chen, and J. Sun, “Tyr: Finding
consensus failure bugs in blockchain system with behaviour divergent
model,” in Proc. IEEE S&P, 2023.

[18] clientdiversity.org, “Ethereum Client Diversity,” 2021,
https://clientdiversity.org.

[19] “Coin Dance: Bitcoin Nodes Summary,” 2021, https://coin.dance/nodes.
[20] ConsenSys, “Teku,” https://consensys.net/knowledge-base/ethereum-2/

teku, 2018.
[21] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,

and A. Juels, “Flash boys 2.0: Frontrunning in decentralized exchanges,
miner extractable value, and consensus instability,” in Proc. IEEE S&P,
2020.

[22] Diem Association, “Welcome to the diem project,” https://www.diem.
com/en-us/, 2019.

[23] Ethereum Foundation, “EVM lab utilities: Utilities for interacting
with the Ethereum virtual machine,” 2017, https://github.com/ethereum/
evmlab.

[24] ——, “Ethereum Proof-of-Stake Consensus Spec Tests,” https://github.
com/ethereum/consensus-spec-tests, 2019.

[25] ——, “Executable Python Spec (PySpec),” https://github.com/ethereum/
consensus-specs/blob/dev/tests/core/pyspec/README.md, 2020.

[26] Y. Fu, M. Ren, F. Ma, H. Shi, X. Yang, Y. Jiang, H. Li, and X. Shi,
“EVMFuzzer: Detect EVM Vulnerabilities via Fuzz Testing,” in Proc.
ACM ESEC/FSE, 2019.

[27] A. Groce, K. Jain, R. van Tonder, G. T. Kalburgi, and C. L. Goues,
“Looking for Lacunae in Bitcoin Core’s Fuzzing Efforts,” in Proc. ICSE-
SEIP, 2022.

[28] J. E. Hopcroft and R. E. Tarjan, “Isomorphism of planar graphs,” in Proc.
Symposium on the Complexity of Computer Computations. Springer,
1972, pp. 131–152.

[29] “Time moves during fork choice spec test,” https://github.com/
prysmaticlabs/prysm/issues/12884, 2023.

[30] “Consider adding attestation deferring test vectors in the fork-
choice spec test,” https://github.com/ethereum/consensus-specs/issues/
3498, 2023.

[31] “Not flushing taskpool when failure happens during spec test,” https:
//github.com/status-im/nimbus-eth2/issues/5415, 2023.

[32] “fork choice spec test seems not fully handling future attestation,” https:
//github.com/Consensys/teku/issues/7804, 2023.

[33] “Data structure discrepancy on deferred attestation,” https://github.com/
Consensys/teku/issues/7805, 2023.

[34] Litecoin Project, “Litecoin - Open source P2P digital currency,” https:
//litecoin.org/, 2011.

[35] LLVM, “libfuzzer – a library for coverage-guided fuzz testing,” 2003,
https://llvm.org/docs/LibFuzzer.html.

[36] E. Lombrozo, J. Lau, and P. Wuille, “Segregated Witness (Consen-
sus layer),” 2015, https://github.com/bitcoin/bips/blob/master/bip-0141.
mediawiki.

[37] F. Ma, Y. Chen, M. Ren, Y. Zhou, Y. Jiang, T. Chen, H. Li, and
J. Sun, “LOKI: state-aware fuzzing framework for the implementation
of blockchain consensus protocols,” in Proc. NDSS, 2023.

[38] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https:
//bitcoin.org/bitcoin.pdf, 2008.

[39] R. Nakamura, “Analysis of bouncing attack on ffg,” https://ethresear.ch/
t/analysis-of-bouncing-attack-on-ffg/6113, 2019.

[40] J. Neu, E. N. Tas, and D. Tse, “Ebb-and-flow protocols: A resolution
of the availability-finality dilemma,” in Proc. IEEE S&P, 2021.

[41] ——, “Two more attacks on proof-of-stake GHOST/Ethereum,” in Proc.
ACM ConsensusDay, 2022.

[42] M. Neuder, D. J. Moroz, R. Rao, and D. C. Parkes, “Low-cost attacks
on ethereum 2.0 by sub-1/3 stakeholders,” in Proc. GTiB, 2020.

[43] “OSS-Fuzz - Google’s continuous fuzzing service for open source
software,” 2016, https://github.com/google/oss-fuzz.

[44] U. Pavloff, Y. Amoussou-Guenou, and S. Tucci-Piergiovanni, “Ethereum
Proof-of-Stake under Scrutiny,” in Proc. ACM/SIGAPP SAC, 2023.

[45] Prysmatic Labs, “Prysm,” https://prysmaticlabs.com, 2018.
[46] P. Reibel, H. Yousaf, and S. Meiklejohn, “Short Paper: An Exploration

of Code Diversity in the Cryptocurrency Landscape,” in Proc. FC, 2019.
[47] C. Schwarz-Schilling, J. Neu, B. Monnot, A. Asgaonkar, E. N. Tas, and

D. Tse, “Three Attacks on Proof-of-Stake Ethereum,” in Proc. FC, 2022.
[48] Sigma Prime, “beacon-fuzz,” https://github.com/sigp/beacon-fuzz, 2019.
[49] ——, “Blockprint,” https://github.com/sigp/blockprint, 2021.
[50] ——, “Lighthouse,” https://lighthouse.sigmaprime.io, 2021.
[51] status.im, “Nimbus,” https://nimbus.team, 2018.
[52] The Dogecoin Foundation & Dogecoin Project, “Dogecoin - An open-

source peer-to-peer digital currency,” https://dogecoin.com/, 2013.
[53] The go-ethereum Authors, “go-ethereum: Official go implementation of

the ethereum protocol,” https://geth.ethereum.org/, 2013.
[54] “CVE-2018-17144,” 2018, http://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2018-17144.
[55] G. Valiente, Tree Isomorphism. Springer Berlin Heidelberg, 2002, pp.

151–251.
[56] D. Vyukov, “go-fuzz: randomized testing for go,” https://github.com/

dvyukov/go-fuzz, 2015.
[57] Y. Yang, T. Kim, and B.-G. Chun, “Finding consensus bugs in ethereum

via multi-transaction differential fuzzing,” in Proc. USENIX OSDI, 2021.
[58] A. Yeow, “Global Bitcoin nodes distribution,” 2021, https://bitnodes.io/.
[59] X. Yi, Y. Fang, D. Wu, and L. Jiang, “BlockScope: Detecting and

Investigating Propagated Vulnerabilities in Forked Blockchain Projects,”
in Proc. NDSS, 2023.

[60] M. Zhang, R. Li, and S. Duan, “Max Attestation Matters: Making Honest
Parties Lose Their Incentives in Ethereum PoS,” in Proc. USENIX
Security, 2024.

https://cryptoslate.com/marathon-digital-confirms-mining-invalid-bitcoin-block/
https://cryptoslate.com/marathon-digital-confirms-mining-invalid-bitcoin-block/
https://github.com/NetSP-KAIST/forky/releases/tag/v0.0.1-alpha.1
https://github.com/NetSP-KAIST/forky/releases/tag/v0.0.1-alpha.1
https://github.com/ethereum/consensus-specs/pull/2730
https://github.com/ethereum/consensus-specs/pull/2730
https://notes.ethereum.org/@djrtwo/2023-fork-choice-reorg-disclosure
https://notes.ethereum.org/@djrtwo/2023-fork-choice-reorg-disclosure
https://beaconcha.in/validators/slashings
https://beaconcha.in/validators/slashings
https://www.binance.com/en/support/announcement/binance-reduces-the-number-of-confirmations-required-for-deposits-withdrawals-on-btc-and-eth-networks-360030775291
https://www.binance.com/en/support/announcement/binance-reduces-the-number-of-confirmations-required-for-deposits-withdrawals-on-btc-and-eth-networks-360030775291
https://www.binance.com/en/support/announcement/binance-reduces-the-number-of-confirmations-required-for-deposits-withdrawals-on-btc-and-eth-networks-360030775291
https://github.com/bitcoin/bitcoin/blob/8b67698420e23db20cfbb9228ca01a68c8ddc10c/src/test/test_bitcoin.cpp#L45
https://github.com/bitcoin/bitcoin/blob/8b67698420e23db20cfbb9228ca01a68c8ddc10c/src/test/test_bitcoin.cpp#L45
https://github.com/bitcoin/bitcoin/blob/8b67698420e23db20cfbb9228ca01a68c8ddc10c/src/test/test_bitcoin.cpp#L45
https://github.com/bitcoin/bitcoin/blob/v0.14.0rc1/doc/fuzzing.md
https://github.com/bitcoin/bitcoin/blob/v0.14.0rc1/doc/fuzzing.md
https://bitcoincore.org/en/2018/09/20/notice
https://bitcoincore.org/en/2018/09/20/notice
https://developer.bitcoin.org/reference/intro.html
https://developer.bitcoin.org/reference/intro.html
https://en.bithumb.com/coin_inout/compare_price
https://en.bithumb.com/coin_inout/compare_price
https://clientdiversity.org
https://coin.dance/nodes
https://consensys.net/knowledge-base/ethereum-2/teku
https://consensys.net/knowledge-base/ethereum-2/teku
https://www.diem.com/en-us/
https://www.diem.com/en-us/
https://github.com/ethereum/evmlab
https://github.com/ethereum/evmlab
https://github.com/ethereum/consensus-spec-tests
https://github.com/ethereum/consensus-spec-tests
https://github.com/ethereum/consensus-specs/blob/dev/tests/core/pyspec/README.md
https://github.com/ethereum/consensus-specs/blob/dev/tests/core/pyspec/README.md
https://github.com/prysmaticlabs/prysm/issues/12884
https://github.com/prysmaticlabs/prysm/issues/12884
https://github.com/ethereum/consensus-specs/issues/3498
https://github.com/ethereum/consensus-specs/issues/3498
https://github.com/status-im/nimbus-eth2/issues/5415
https://github.com/status-im/nimbus-eth2/issues/5415
https://github.com/Consensys/teku/issues/7804
https://github.com/Consensys/teku/issues/7804
https://github.com/Consensys/teku/issues/7805
https://github.com/Consensys/teku/issues/7805
https://litecoin.org/
https://litecoin.org/
https://llvm.org/docs/LibFuzzer.html
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://github.com/google/oss-fuzz
https://prysmaticlabs.com
https://github.com/sigp/beacon-fuzz
https://github.com/sigp/blockprint
https://lighthouse.sigmaprime.io
https://nimbus.team
https://dogecoin.com/
https://geth.ethereum.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17144
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17144
https://github.com/dvyukov/go-fuzz
https://github.com/dvyukov/go-fuzz
https://bitnodes.io/

	Introduction
	Background
	Threat Model
	Forky Overview
	Motivating Example
	Our Approach

	Fork-Aware Mutation Strategies
	Mutating Input Fork Structures
	Mutation for PoS: Votes and Times

	Fork-Diversifying Feedback
	High-level Intuition
	New Feedback

	Implementation and Evaluation
	Implementation
	Evaluation
	Findings
	Performance
	Number of Reorgs
	Diversity of Reorgs
	Quantitative Comparison with Other Tools


	Case Studies
	Case 1: Reorganization Bug in Bitcoin (#4)
	Case 2: Data Structure Bug in Ethereum (#7)

	Discussion
	Limitations of Forky
	Implications and Responses
	Testing Framework in Ethereum

	Related Work
	Conclusion
	References

