
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

On the Routing-Aware Peering against
Network-Eclipse Attacks in Bitcoin

Muoi Tran and Akshaye Shenoi, National University of Singapore;
Min Suk Kang, KAIST

https://www.usenix.org/conference/usenixsecurity21/presentation/tran

On the Routing-Aware Peering against Network-Eclipse Attacks in Bitcoin

Muoi Tran

National University of Singapore

Akshaye Shenoi

National University of Singapore

Min Suk Kang∗

KAIST

Abstract

Safeguarding blockchain peer-to-peer (P2P) networks is

more critical than ever in light of recent network attacks. Bit-

coin has been successfully handling traditional Sybil and

eclipse attacks; however, a recent Erebus attack [57] shows

that effectively eclipsing a Bitcoin node is possible when the

attack is combined with a network-Sybil capability; i.e., a

malicious transit network can create millions or more Sybil

identities. Given the immediate availability and stealthiness

of the Erebus attack, Bitcoin Core has quickly implemented

a few simple protocol/parameter changes to mitigate it. Our

large-scale evaluations of these quick patches and three simi-

lar carefully-designed protocol tweaks confirm that, unfortu-

nately, no simple solution can effectively handle the attack.

This paper focuses on a more fundamental solution called

routing-aware peering (or RAP), a proven silver bullet in

detecting and circumventing similar network adversaries in

other P2P networks. However, we show that, contrary to our

expectation, preventing the Erebus attacks with RAP is only

wishful thinking. We discover that Erebus adversaries can

exploit a tiny portion of route inference errors in any RAP

implementations, which gives an asymmetric advantage to the

network adversaries and renders all RAP approaches ineffec-

tive. To that end, we propose an integrated defense framework

that composes the available simple protocol tweaks and RAP

implementation. In particular, we show that a highly cus-

tomizable defense profile is required for individual Bitcoin

nodes because RAP’s efficacy depends significantly on where

a Bitcoin node is located on the Internet topology. We present

an algorithm that outputs a custom optimal defense profile

that prevents most of Erebus attacks from the top-100 large

transit networks.

1 Introduction

Many blockchains run on permissionless decentralized peer-

to-peer (P2P) networks. Their openness and decentralization

∗Corresponding author.

have been the keys to the success of cryptocurrencies and

smart contracts; however, this comes with a price — they are

potentially vulnerable to Sybil [15] and eclipse [51] attacks.

Bitcoin [40], one of the most popular blockchain systems, has

been effectively addressing Sybil and eclipse attacks. First, a

Sybil attacker in Bitcoin can create many peer identities with

different IP/port combinations using a single peer machine.

In this way, the attacker can act like multiple peers in the

system. However, the spawned Sybil identities do not cause

much harm because the Bitcoin P2P protocol groups all the

Sybil identities from a single IP address and contains them.

Second, eclipse attacks target a specific node and manipulate

the target’s peering algorithm to isolate it from the rest of the

network. The current Bitcoin client software is robust to the

known attack [27] after patching a few vulnerabilities in its

peering algorithm [25, 26].

However, a more recent attack, dubbed Erebus [57], shows

that Bitcoin is still vulnerable to a persistent eclipse at-

tack with the network-Sybil capability; i.e., a malicious au-

tonomous system (AS) creating large numbers of peer identi-

ties via IP spoofing. Bitcoin’s permissionless nature allows

any sizable network adversaries (e.g., the top-100 largest

ASes [9]) to easily create and use massive Sybil identities and

ultimately control all of a target node’s connections. Bitcoin

Core has implemented a few quick patches to mitigate this

attack [41, 52] with the caveat that none of them are com-

plete solutions yet [21]. Our evaluations (see Section 3) con-

firm that these simple protocol fixes (and some other simple

protocol tweaks) only marginally increase the Erebus attack

execution time.

A more desirable long-term approach to the Erebus attack

is to remove the network adversary’s capability of utilizing

large numbers of Sybil identities. One recurring suggestion

for this is what we call a routing-aware peering (or RAP)

approach. This option is a proven silver bullet in detecting

and circumventing similar network adversaries in Tor P2P

networks [1,45,53]. RAP empowers individual Bitcoin nodes

to identify Sybil peer identities by analyzing the routes to-

wards all potential peers. Some early discussions on RAP

USENIX Association 30th USENIX Security Symposium 1253

approaches in Bitcoin have been initiated, but no concrete

implementation is available, possibly due to higher implemen-

tation complexity than quick patches.

This paper argues that preventing Erebus attacks with RAP

is, unfortunately, wishful thinking. Unlike RAP in similar

Tor P2P networks, RAP implementations in Bitcoin fail to

prevent network adversaries and only increase the attack ex-

ecution time slightly. We find that the critical weakness of

all possible RAP approaches in Bitcoin is their infrequent yet

inevitable route inference errors; e.g., less than 6% of miss

rate. In a permissionless Bitcoin P2P network (unlike the

semi-permissionless Tor network), such a low route inference

error rate in RAP can be translated into tens or even hundreds

of thousands of Sybil identities, which is still enough for a

successful Erebus attack. By exploiting these rare inference

errors in RAP, adversaries obtain an asymmetric advantage

over a target Bitcoin node and successfully eclipse it in most

cases.

After learning that no single countermeasure in the P2P

layer can effectively mitigate the Erebus attack, we alterna-

tively aim to design a defense system that integrates all these

available countermeasures to provide a workable, practical so-

lution against the attacks. Integrating the simple patches and

RAP implementations may first seem obvious. However, it is

not straightforward for two reasons: (1) simply implementing

more of the available countermeasures in a Bitcoin node may

not necessarily guarantee better defense performance as the

security against the Erebus attack is non-monotonic; and (2)

there exists no one-size-fits-all RAP operation in practice be-

cause its performance and cost vary drastically depending on

where on the Internet topology a Bitcoin node is located. To

that end, we present a new customizable defense framework

for Bitcoin node operators to make an informed decision re-

garding the Erebus mitigation, particularly depending on their

nodes’ locations on the Internet topology. We also present

an efficient algorithm that outputs RAP’s optimal operating

point along with the simple countermeasures, which prevents

up to 98% of Erebus attacks from the top-100 large transit

networks.

We summarize our contributions as follows:

• We evaluate a set of six (three old and three new) simple

protocol/parameter tweaks against a recently proposed Ere-

bus attack [57] using (and improving) a publicly available

evaluation framework (§3). We conclude that none of them

successfully mitigate the Erebus attack, unfortunately.

• We then evaluate a highly promising defense approach

called routing-aware peering (RAP) and show that, con-

trary to our expectation, no practical RAP implementations

for Bitcoin can prevent the Erebus attacks. They can only

slightly increase the attack execution time (§4 and §5). Our

new finding is that a minimal route inference error rate

(which is shown to cause no significant impact to the previ-

ous defenses in similar P2P attacks) can give an asymmetric

triednew

Bitcoin client

IP grouping

(e.g., /16 prefix)

promote

insert

…
��! ��"#��"

Outgoing connections

50% 50%
select

peer IP address

1

3

5

demote

evict

4

2

Figure 1: An illustration of the life cycle of peer IP addresses

in Bitcoin. IPs are stored in two-tier tables where reliably

reachable IPs are selected to be outgoing peers, and “terrible”

(e.g., older than 30 days) IPs are eventually evicted.

advantage to the Erebus network adversaries.

• We propose an integrated defense framework by composing

the available simple protocol patches and the RAP imple-

mentations (§6) to protect Bitcoin nodes against the ma-

jority of the Erebus attacks. Our framework allows highly

customizable defense profiles for Bitcoin nodes in diverse

network environments that balance the desired level of ro-

bustness against the Erebus attack and the costs of RAP

operation.

2 Threat Model

In this paper, we consider the same attack goals and capabili-

ties of the original Erebus attack [57]. As a background, we

briefly introduce the Bitcoin peer-to-peer network (§2.1), and

then we describe the Erebus attack model (§2.2).

2.1 Background on the Bitcoin P2P Protocol

Bitcoin [40] relies on a P2P network of individual nodes

to maintain a replicated distributed ledger, the blockchain,

which stores the historical ownership information of all funds

in the system. A fund can be transferred from one user to

another in a transaction. Valid transactions are grouped into

a block, and the blockchain is periodically extended with a

new block via a mining process. All transaction and block

information is propagated by the P2P network until all nodes

in the system are synchronized with the same state. Since

Bitcoin is permissionless (i.e., nodes can freely join and leave

the system), it allows a node to notify its existence to the

network via self-advertising its peer identity (e.g., IP address)

to some peers, who then propagate the address information to

all other nodes. Bitcoin aims to form a random P2P network,

where each node establishes ten outgoing connections that

are carefully selected from its local database that stores other

peers’ identities [13]. Nodes with public IPs also accept up to

115 incoming connections and are considered reachable.

For an easier understanding of how the peer information

(i.e., IP addresses) is maintained and used in Bitcoin, let us

1254 30th USENIX Security Symposium USENIX Association

zoom into the internal workings of a single Bitcoin node and

show the life cycle of an IP address, i.e., all possible steps that

it would experience within the internal data structure of the

node in Figure 1. The internal peer database of a node consists

of two tables: the new table stores newly-propagated IPs, and

the tried table stores the IPs that have been connected to.

Both tables manage IPs in groups (e.g., /16 prefix for IPv4)

where each group can occupy only a small portion of the

tables; see previous work [27, 57] for the detailed description

of IP allocation. There are five steps in the life cycle of an IP

address:

• In Step ➀, the IP address propagated by other peers is

initially inserted into the new table.

• If the new IP is inserted into an already occupied slot and

the existing IP is “terrible” (e.g., older than 30 days), the

existing one is evicted from the table; see Step ➁. We

observe that most IPs in the new table tend to become

unreachable in the long run.

• Every two minutes, one randomly-chosen IP address from

the new table is tested by a short-lived connection (i.e.,

feeler connection) and is promoted to the tried table if it

is reachable; see Step ➂. From our observation, most IPs

in the tried table tend to be reachable even after a few

weeks later.

• Step ➃ describes the demotion of an IP address from the

tried table to the new table if another IP is inserted into

its slot and it is tested to be unreachable.

• In Step ➄, when there are not yet ten outgoing connections,

a reachable IP is selected at random from either new or

tried table (which table is chosen is also randomized) to

establish a connection. If this new outgoing peer is selected

from the new table, it is also promoted to the tried table

as in Step ➂.

2.2 The Erebus Attack

The Erebus attack was recently presented as a stealthy parti-

tioning attack against Bitcoin P2P network [57]. At a high

level, the Erebus attacker follows the common attack recipes

of P2P eclipse attacks, such as [27]; that is, to gradually in-

sert adversary-controlled identities into the peer database of

a targeted Bitcoin node until all connections selected by the

victim are made to those peers (i.e., the victim is isolated

from the rest of the network). The main difference of the

Erebus attack compared to typical eclipse attacks is that a net-

work adversary creates millions or more network-Sybil peer

identities by spoofing IP addresses of any ASes behind her

network with respect to the victim node’s location. Figure 2

illustrates an example of the Erebus attack in which the ad-

versary “AS666 Evil Telecom”1 injects selected IP addresses

(e.g., B and C) into the victim’s internal database in the form

1The AS number 666 is used as a symbol of the devil’s number. It is not

meant to indicate a real AS with AS number 666.

AS666

Evil Telecom

A B

C

victim

Bitcoin node

Autonomous

System (AS)

A B
C

inject B, C

peer

database

Figure 2: An illustration of the Erebus attack [57]. “AS666

Evil Telecom” inserts some Sybil IPs (e.g., B and C) into

the peer database of the victim Bitcoin node so that peer

connections towards these Sybil IPs can be made later at the

victim’s discretion. At some point in time, AS666 eventually

hijacks all peer connections of the victim node.

of peer advertisements and waits for the victim to connect to

B and C. When all connections are made to Sybil IPs, the

attack is considered as successful. Note that the adversary

AS must be on the paths from the victim to Sybil nodes (e.g.,

B, C) to spoof their IP addresses but not necessarily on the

reverse-direction paths.

We consider a network adversary (e.g., Tier-1 or large

Tier-2 ASes) that has the full control of any messages go-

ing through her own network. The attacker can also send only

low-rate (e.g., once every few seconds) source-IP-spoofed

packets. The attack goal is to occupy all the peer connections

of a targeted node and thus isolate (or eclipse) the targeted

Bitcoin node from the rest of the Bitcoin P2P network.

Assumptions for victim nodes. We make the same as-

sumptions made in the original Erebus attack work [57] for

the victim Bitcoin nodes.

• Identified by public IPs. We consider Bitcoin full nodes

with public IP addresses. There are about 8,000 such pub-

lic nodes as of February 2021 [59]. Note that SPV client

nodes [40], VPN-connected nodes, or Bitcoin nodes con-

nected via Tor are out of scope as the original Erebus attack

work also does not target them [57].

• IPv4 only. The vast majority (e.g., 85%) of Bitcoin nodes

run with IPv4 [59], and we also assume that a victim node

has a single IPv4 address. We limit ourselves to the IPv4

space in this paper, considering that an IPv4 Bitcoin node

can only connect directly to other IPv4 nodes [24].

• No central regulating authority. Network attacks at the

P2P layer are often prevented with some trusted central

regulating authorities; e.g., a repository of white-listed (or

black-listed) peers or connecting through relay nodes [3,18,

USENIX Association 30th USENIX Security Symposium 1255

20]. However, relying on such a centralized party is a less

ideal approach, particularly in cryptocurrencies, as it may

violate the permissionless blockchain principle. Thus, in

this paper, we only consider solutions without any central

authorities.

• No moving target defense. Targeted network attacks are

sometimes effectively mitigated when a victim host fre-

quently changes its network identity [2, 30, 31]. However,

we argue that moving target defenses should only be the

last resort for Erebus mitigation. When a moving target

defense is deployed in a permissionless decentralized P2P

network, a peer node needs to rebuild its P2P connectiv-

ity at every IP change. However, frequent IP changes in

Bitcoin are known to seriously damage the peers’ network

connectivity and negatively affect the block and transaction

propagation [29].

• No cross-layer solutions. The Erebus attack work [57]

suggests one potential countermeasure called ‘smart peer

eviction policy’ that requires some interactions between

the consensus layer and the P2P network layer. Despite its

potentials, such a cross-layer solution would unavoidably

complicate the implementation and, worse, may open up

new vulnerabilities. Thus, in this paper, we strictly limit

ourselves to the P2P network-layer only solutions.

3 Limitations of Simple Countermeasures

Considering its immediate availability and the stealthiness

property of the Erebus attack, the Bitcoin Core team has an-

nounced two simple patches not long after the publication

of the Erebus attack [41, 52]. However, no systematic, large-

scale evaluations have been conducted on such simple coun-

termeasures. As a first step towards the Erebus mitigation,

we implement and evaluate several simple countermeasures

(including the two already adopted quick patches) to the Ere-

bus attack. We consider a countermeasure is simple when the

required change to the Bitcoin codebase is only a few lines of

source code or even a single parameter change.

We first review three proposed tweaks from existing work

and present three additional tweaks derived from our IP “life

cycle” in Bitcoin P2P (§3.1). We then empirically evaluate

the Erebus attacks against them and confirm that tweaking the

Bitcoin protocol is insufficient to address the attacks (§3.2).

3.1 Bitcoin Protocol Tweaks

We present several protocol tweaks along with their descrip-

tions, objectives, caveats, and deployment status in Table 1.

Previously-proposed simple countermeasures. The origi-

nal Erebus paper [57] suggests four changes to the Bitcoin

protocol, i.e., ASN-based grouping, more outgoing connec-

tions, table size reduction, and smart peer eviction policy, and

we implement and test the first three countermeasures. As of

this writing, the ASN-based grouping (T1) is supported in Bit-

coin Core as an experimental feature [13, 41]. Since Bitcoin

0.19.0, two more outgoing connections are added for propa-

gating only the block data, which happens infrequently (e.g.,

few MBs every ten minutes) and unlikely creates the traffic

burden to the network. If the additional connections are block-

relay-only or the on-going developments of bandwidth-saving

for Bitcoin transactions (e.g., Erlay [42]) are integrated into

Bitcoin, adding even more connections (T3) is worth consid-

ering. The table size reduction tweak has not been developed,

perhaps because it contradicts the protocol tweak made after

the Eclipse attack [27] where both new and tried tables are

increased by four times.

The Eclipse paper [27] makes several suggestions to Bit-

coin and most of them have been deployed over the years,

except the anchor connection tweak (T2) that resurfaces af-

ter the Erebus attack is presented [52]. Currently, Bitcoin

preserves two block-relay-only connections (i.e., anchors)

when rebooting to prevent eclipse attackers from terminating

existing (likely legitimate) connections [13].

Additional simple countermeasures. An important observa-

tion from the “life cycle” of Bitcoin peer IP addresses (see

Section 2.1) is that when the Erebus attack occurs, the at-

tacker IPs can easily dominate the new table but cannot evict

legitimate reachable IPs from the tried table. This suggests

that if we increase the legitimate IPs in tried table or priori-

tize IPs from tried table for peer selection, the chance for

selecting the attacker’s peers will be significantly lowered.

Taking this observation as the guiding light, we find three

new tweaks, i.e., always select IPs from tried table, tried

table reduction, and feeler interval reduction. First, in Step ➄

in Figure 1, when selecting an IP address for an outgoing con-

nection, Bitcoin nodes should always select from the tried

table (if tried table has sufficient IPs) (T4), instead of ran-

domly selecting from either new or tried tables. This re-

quires the attacker to spend significantly more time waiting

for IP promotion and removes the risk of selecting attacker

IPs from new table. Second, because reachable legitimate

nodes cannot be removed from tried table, we should re-

duce the tried table size (T5) so that the number of empty

slots occupied by the adversary is minimized. Particularly, the

tried table (consists of 16 thousand slots currently) should

be well-aligned with the number of reachable Bitcoin nodes

in the system (about 8 thousand nodes). Note that we do

not suggest reducing the new table’s size as in the original

Erebus paper because the attacker can easily replace the ma-

jority of the unreachable IPs in new table anyway. Third, the

promotion rate can be increased (i.e., by reducing the feeler

connection interval) (T6) so that there are more legitimate

reachable IPs in the tried table. However, this tweak may

be beneficial for the attacker if there are too many empty slots

because attacker IPs will also be inserted quicker.

1256 30th USENIX Security Symposium USENIX Association

Table 1: Bitcoin protocol tweaks. T1–T3 are previously proposed while T4–T6 are newly derived from the IP life cycle.

Name Description Objective Caveat Status

ASN-based

grouping (T1)

IP addresses in the two tables are

grouped based on their AS number,

instead of prefix (/16 for IPv4 or /32

for IPv6).

To reduce attacker IPs in the tables, as they usu-

ally belong to fewer ASes than they do to prefix

groups.

Effectiveness may be insignifi-

cant [21, 57].

Proposed in [57] and in-

cluded in Bitcoin as a non-

default, under-testing option

since version 0.20.0.

Anchor

connection (T2)

Upon rebooting, some last-known

outgoing peers, called anchors, are

re-connected.

To mitigate a common strategy of eclipse at-

tacks [27, 57] that removes all existing connec-

tions of the victim via rebooting it.

Attacker IPs can also be se-

lected as anchors.

Proposed in [27] and being

developed [52].

More outgoing

connections

(T3)

The number of outgoing connec-

tions is increased.

To lower the chance of selecting all attacker IPs

as outgoing peers, forcing the attacker to occupy

the database with a higher ratio.

The P2P network will need to

propagate more traffic.

Suggested by [27, 57]. Since

Bitcoin 0.19.0, two outgoing

connections are added.

Always select

IPs from tried

table (T4)

When selecting an IP address for

outgoing connections, the tried ta-

ble should always be selected.

To force the adversary to spend more time wait-

ing for IP promotion and to remove the risk of

selecting attacker IPs from the new table.

IPs from new table will still

be selected when there are not

many IPs in tried table.

Derived from step ➄ of the

IP life cycle.

Tried table

size reduction

(T5)

The tried table should have a

smaller size so that its space is well-

aligned with the number of nodes in

the system.

To reduce tried slots occupied by the

adversary-chosen IPs when the attack happens

because there is less space and it is impossible

to remove reachable legitimate IPs.

The size should be adjusted ac-

cordingly to the state of the

network.

Derived from step ➂ of the

IP life cycle.

Feeler interval

reduction (T6)
The interval of the feeler connec-

tions is shortened.

To increase legitimate reachable IPs in the

tried table via IP promotion.

If there are many empty slots

in the tried table, attacker

IPs are also inserted quicker.

Derived from step steps ➂,

➃ of the IP life cycle.

3.2 Evaluation of Simple Protocol Tweaks

We now evaluate the discussed simple protocol tweaks.

Evaluation framework. We use the open-source Bitcoin em-

ulator [6], which was used to evaluate the original Erebus

attack [57], to emulate a Bitcoin node’s peer selection. We

also update the emulator to reflect the latest Bitcoin version

0.21.0 [13] with a few recent changes; e.g., two out of ten

outgoing connections are used for only block data propaga-

tion. For realistic operations, we feed the emulated node with

the real Bitcoin address advertisements (i.e., addr messages)

containing the real IPs that our live Bitcoin node collected in

380 days (from November 18, 2018, to December 4, 2019).

Upon making an outgoing connection to a peer, the emu-

lated node queries the Bitnodes dataset [59] to check if the

peer is reachable (i.e., it accepts incoming connections) at

that moment in the simulation time. We run our experiments

on a Dell PowerEdge R630 server with 40 cores of Intel(R)

Xeon(R) E5-2640 v4 @ 2.40GHz and 128 GB of memory.

Emulating a Bitcoin node running for 380 days on one CPU

takes about 20–30 minutes on average.

Attack scenarios. We consider the 100 largest ASes in the

current Internet ranked by their customer cone size [9] as

the adversaries, similar to the evaluation of the Erebus at-

tacks [57]. To learn the attacker IPs (i.e., that have the at-

tacker on the victim-to-IP paths), we measure 47.2 million

data-plane paths from 59 globally-distributed nodes to all

800 thousand available IPv4 prefixes in the Internet. Those

include 21 nodes hosted at different regions of five popular

cloud providers (i.e., Amazon, OVH, DigitalOcean, Hetzner,

and Alibaba)2, 26 PlanetLab nodes [46]3, and 12 PEERING

2The majority of Bitcoin nodes are also running on clouds [59].
3We have collected all our results before PlanetLab officially closes down

in May 2020.

servers [50]4; refer to Appendix A for more details of our

data-plane route measurement. Considering our measurement

nodes as the victim Bitcoin nodes, we have 5,900 different

attack scenarios.

In each scenario, we execute the Erebus attack against our

emulated node, which runs attack-free for 30 days before the

attack commences. Then, we wait up to 380 days (i.e., our

maximal realistic emulation duration) to measure the required

attack execution time for controlling all outgoing connections

of the victim, i.e., the attack is successful. When we want to

directly estimate the attack success probability with respect to

the actual IP churn rate (i.e., how often Bitcoin nodes change

their IP addresses), we model the online time of the victims

from the actual distribution (see the measured IP churn rate

of Bitcoin nodes in the wild in Appendix B) and compute the

success/failure of each attack attempt.

Tweak implementations. Here, we evaluate six tweaks T1–

T6 in Table 1. To implement T1, we use the Routeviews

Prefix-to-AS mapping [12] to map IPs into AS numbers (see

Appendix C for a more sophisticated mapping being imple-

mented by Bitcoin Core). For T2, we follow the configura-

tion of Bitcoin Core [52] to preserve two block-relay-only

connections across rebooting. To test T3, we add six more

block-relay-only connections (i.e., sixteen outgoing connec-

tions in total) so that the number of outgoing connections

is doubled than before the Erebus attack. When testing T4,

our simulated nodes select outgoing peers from both tables,

then switch to selecting exclusively from the tried table

when 25% of the tried slots are filled. For T5 and T6, we

reduce the tried table size and the feeler interval by four

times, respectively. We also evaluate the effectiveness of the

4We used all 12 PEERING servers that have the full routing tables, see

https://peering.ee.columbia.edu/peers/ for the list of servers.

USENIX Association 30th USENIX Security Symposium 1257

0 50 100 150 200 250 300 350

Attack execution time (days)

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

 f
u

n
ct

io
n

Baseline

T1

T2

T3

T4

T5

T6

(a) CDF of required attack time.

B T1 T2 T3 T4 T5 T6
0

0.2

0.4

0.6

0.8

1

A
tt

ac
k

 s
u

cc
es

s
ra

te

(b) Attack success rate.

Figure 3: Cumulative distribution of the required attack exe-

cution time and the attack success rate when a Bitcoin client

implements the protocol tweaks T1–T6.

baseline client without any tweak, called Baseline or B. We

use conservative parameters for T2–T6 in our evaluations.

More discussions in the community might be needed before

the actual development of these tweaks.

Results. We present the defense effectiveness of the tweaks in

Figure 3 with the CDF plots of the required attack duration in

all attack scenarios and the rate of successful attack instances.

Figure 3a shows that individual tweaks of Bitcoin protocols

do not demonstrate significant improvements as they reduce

the number of attack instances that require less than 350 days

by only less than five percentage points. The results shown

in Figure 3b confirm that tweaks T1–T5 reduce the attack

success rates insignificantly, around only 2–16 percentage

points from 54.7%. Exceptionally, T6 makes Bitcoin clients

perform even worse than the baseline version, perhaps be-

cause there are too many empty tried slots for attacker IPs

to occupy when the attacks commence.

To sum up, simple tweaks for the Bitcoin protocol are

indeed beneficial for mitigating the Erebus attacks; yet, their

effectiveness is only marginal, if not negative. The most

robust tweak T2 (i.e., anchor connections) is still insufficient

to mitigate the Erebus attacks with the success rate of 38.6%,

which urges us to look for more complex and potentially more

effective solutions.

4 Routing-Aware Peering: A Rescue to Save

Bitcoin from the Erebus Attacks?

Understanding the shortcomings of the quick, simple solu-

tions, we turn our attention to a long-term solution. We aim to

remove the network Sybil capability of the Erebus adversaries,

which makes the attack possible in the first place. A potential

countermeasure, called routing-aware peering (RAP), lets a

Bitcoin node use the knowledge of end-to-end routes of all

its peer connections and tries to prevent them from going

through a suspicious AS, effectively disabling the attackers’

network-Sybil capability. The idea of RAP has already been

mentioned multiple times as a promising solution to the Ere-

bus attack [4, 57] since it is proven effective in preventing

similar network adversaries in Tor P2P networks.

This section first explains the rationale for integrating the

routing knowledge into the Bitcoin peer selection for Erebus

mitigation (§4.1). Then, we outline the high-level design of a

RAP defense in the current Bitcoin (§4.2).

4.1 Why is RAP Believed to Prevent the Ere-

bus Attacks?

The rationale behind RAP as a mitigation to the Erebus attacks

is to empower each Bitcoin node with the symmetric defense

capability. In the same way that an Erebus adversary exploits

the end-to-end routing knowledge to place itself in a man-in-

the-middle position, a target Bitcoin node can also utilize the

same knowledge to detect when an attack occurs. If a victim

node is also equipped with end-to-end routing knowledge and

aware of which ASes are (and will be) located on the existing

(and the future) peer connections, it can detect an Erebus

attack campaign even before all the peer connections are made

through a malicious AS. For example, as shown in Figure 2,

a victim node can learn that all of its peer connections cross

the evil AS666 and then try to find some new peers whose

victim-to-peer routes do not include the malicious AS.

In fact, the idea of RAP defenses has been already shown

to be highly effective in a different context, particularly for

securing Tor [1, 45, 53] against AS-based traffic analysis at-

tacks [19, 39, 54]. In these Tor attacks, a malicious AS aims

to be on the man-in-the-middle position of many (if not all)

of the Tor paths from/to the victim Tor clients and the covert

public servers (e.g., Tor-client-to-entry-relay paths, exit-relay-

to-server paths). The required defense capability against these

Tor attacks is similar to what we aim to achieve via RAP in Bit-

coin; that is, an end client learns the intermediate ASes of their

Tor paths, detects these malicious-AS attacks, and chooses

other Tor relays that ensure attacker-free inter-domain routes.

Based on the highly promising track records of RAP-based

defenses against malicious-AS attacks in Tor P2P networks,

it is easily believed that RAP would also effectively mitigate

the Erebus attack in Bitcoin.

4.2 Design Overview of RAP in Bitcoin

As we design a practical RAP defense logic in Bitcoin, we

consider a general defense scenario where a Bitcoin node

does not know the Erebus adversary AS a priori. That is, a

Bitcoin node operates a RAP defense to prevent any interme-

diate ASes from overseeing all its peer connections without

knowing exactly which AS is a malicious AS.5 Note that this

is a conservative defense scenario as it is strictly easier to op-

erate a RAP defense when the malicious Erebus AS is known

to the victim node.

5Collaborative Erebus attacks, where two or more ASes collaborate to

hijack the victim’s peer connections, are out of the scope of this work, as is

the case in the original Erebus paper [57].

1258 30th USENIX Security Symposium USENIX Association

Peer Selection Logic…
��! ��"

Make outgoing connection to �����2

Routing-Aware Peering (RAP)
new

tried

IP address
tables

1

Bitcoin client

��#

k existing

outgoing

connections
existing

outgoing

conn.

Randomly select ����� from IP address tables

��!"#

��$ ��%
…

route(��!"#), route(��$), …, route(��%)

Found an AS on

more than τ routes?

Route Inference

yes

GoTo 1

no

Figure 4: Bitcoin’s peer selection logic and routing-aware

peering (RAP) improvement. When IPnew is chosen for a

new outgoing connection, the RAP function checks whether

a malicious AS will likely be on the path.

The routing-aware peering (RAP) defense requires each

Bitcoin node to obtain the routing knowledge (i.e., the inter-

domain routes) for all of its peering connections. We call this

new core functionality the route inference logic, and we add it

to the existing Bitcoin’s peer selection algorithm. Essentially,

the route inference returns an estimated AS path from the

client (i.e., itself) to any given IP address.

Figure 4 illustrates how the current Bitcoin’s peer selection

logic is implemented and how it can be augmented for RAP.

When a Bitcoin client wishes to make one more outgoing

connection, it selects an IP address IPnew from its internal

tables at random; see step ➊. The current implementation

immediately attempts to make a new outgoing connection to

IPnew; see step ➋. Instead, the RAP implementation takes

the chosen IPnew and checks if the new connection will likely

include any potentially malicious AS before opening a con-

nection to it. Using the route inference logic, RAP obtains

the inferred routes to IPnew and to all existing outgoing peer

IPs (i.e., IP1, · · · , IPk). If a potentially malicious AS appears

in more than τ routes, RAP rejects this new IPnew; otherwise,

it proceeds to make an outgoing connection to it.

The threshold τ is an adjustable parameter defining the

maximum number of allowed connections that share a poten-

tially malicious AS. It controls how strictly the RAP function

is operated. When τ is set to a low value, not many peer con-

nections can share the same intermediate ASes; thus, more

route diversity among peer connections is expected. On the

contrary, if τ is set to a high value, the node allows multiple

of its peering connections to share the same intermediate AS.

Note that τ = 1 forces all the peering routes to be disjoint and

τ = 10 disables RAP. An individual Bitcoin node can easily

adjust the value of τ, and the effect of different values of τ is

analyzed later in Section 6.2.

5 Why RAP Fails to Prevent the Erebus At-

tacks

We have explained why RAP is believed to be effective pre-

vention of the Erebus attacks. However, our discussion in

Section 4 conveniently ignores the implementation details of

the route inference logic, which is the core component of any

Bitcoin RAP implementations. We first review and evaluate

several implementation choices for the route inference logic

in RAP and show that there must inevitably exist some route

inference error cases (§5.1). Then, we introduce a subtle but

powerful Erebus attack strategy that exploits even a tiny por-

tion of route inference errors (§5.2). The exploitation gives

an asymmetric advantage to the Erebus adversaries, allowing

them to successfully isolate (or eclipse) the targeted Bitcoin

node with a RAP defense for the majority of cases (§5.3).

5.1 The Devil Is in the Detail: Non-idealities of

Route Inference in RAP

We exhaustively list the possible ways of route inference in

RAP and quantitatively compare them with our large-scale

experiments in the Internet.

We first divide all feasible approaches (to the best of our

knowledge) into three categories, i.e., (1) control-plane es-

timation, (2) control-plane look-up, and (3) data-plane mea-

surement, and discuss their pros and cons.

(1) Control-plane estimation: A Bitcoin node locally com-

putes the estimated inter-domain route for a given destination

address. Based on the publicly available data (e.g., AS-level

topology [10], BGP feeds [44, 49]), there have been several

proposals and algorithms on inter-domain route estimation

(e.g., [1,37,47]). (Pros) Individual nodes can run the full route

computation locally, and pre-computation can also be done to

remove the on-line computation burden. (Cons) Estimation

algorithms are imperfect; thus, the BGP route inference may

be prone to estimation errors.

(2) Control-plane look-up: A Bitcoin node directly learns

the BGP routes to a specific destination from the routing table

(e.g., RIB) of its local BGP gateway. Unlike the previous

BGP estimation, this results from the actual BGP operation

of BGP-speaking routers. (Pros) Bitcoin nodes can obtain

the up-to-date BGP path to the destination by making on-

demand queries to the local BGP gateways. Minimum one

query has to be made to obtain the BGP route to an IP ad-

dress. For this, network operators’ assistance is necessary;

for example, cloud service providers, access ISPs, or cam-

pus networks can provide APIs to the Bitcoin nodes in their

networks for requesting the AS path to a certain destination.

Note that such APIs are already widely available in most

legacy BGP routers; e.g., BGP look-up service in Looking

Glass servers [33]. (Cons) Large networks, such as cloud

service providers, often have multiple BGP exit gateways

interfacing multiple different peering ASes across different

regions. When querying the BGP path to a destination IP ad-

dress, the returned path may differ depending on the specific

BGP gateways to which the query is made. This is due to

the well-known interaction between intra- and inter-domain

routing protocols (e.g., hot-potato routing [55]). A practical

USENIX Association 30th USENIX Security Symposium 1259

Table 2: A quick comparison between three notable BGP

route estimation algorithms in the literature.

Algorithms

by Authors
Input Data Advantages

Mao et al.

[37]

AS-level topology and busi-

ness relationship

Lightweight, minimal

dependencies

Qiu et al.

[47]
(all above) and BGP feed data

More fine-grained and

accurate estimation

Akhoondi

et al. [1]

(all above) and estimated AS

path lengths

Over-estimation of in-

termediate ASes

� exists � does not exist

� exists

� does

not exist

Measured routeInferred

route

True Positive

�����

�

�����

�

�

�����

�

�

�����

�

False Negative

False Positive

True Negative

�

�

Figure 5: Confusion matrix for evaluating an inferred route

from v to IPnew, given the potentially malicious AS M.

deployment of a control-plane look-up should take this issue

into account.

(3) Data-plane measurement: A Bitcoin node directly mea-

sures the route towards a specific destination via probing tools,

such as traceroute. (Pros) This approach requires minimal

reliance on external data. Moreover, a Bitcoin node can ob-

tain a fine-grained (i.e., IP-router level) paths that actual IP

packets would likely travel. (Cons) This cannot be used in

practice. The main problem is that a malicious Erebus AS can

easily manipulate the traceroute measurements. The ma-

nipulation can be done by simply dropping the traceroute

probe packets; worse, more careful manipulation of measured

paths is also possible. Detection of such manipulation (e.g.,

anomaly detection in the longitudinal traceroute analysis)

is extremely difficult because of the dynamic nature of route

changes; see our anomaly detection of traceroute results

in Appendix D. The bottom line is that due to the lack of

authentication in the measured routing paths, detecting such

spoofing is extremely challenging, making data-plane mea-

surement an impractical option.

Evaluation setup. We, therefore, implement three state-of-

the-art control-plane estimation schemes (i.e., Mao et al.’s

algorithm [37], Qiu et al.’s algorithm [47], Akhoondi et al.’s

algorithm [1]) and the control-plane look-up mechanism, and

compare them particularly in terms of inference accuracy.

We summarize the three control-plane estimation schemes in

Table 2 and provide their brief descriptions as follows.

• Mao et al.’s algorithm [37] determines the inter-domain

path between two ASes is the shortest AS path among

all “valley-free” paths [22] between them based on the

inferred business relationship [10]. We apply the following

widely practiced BGP policies in order [23]: only valley-

free paths are selected [22]; the shortest AS-path length

route is preferred; and if multiple best paths exist, paths

with smaller next-hop AS numbers are chosen.

• Qiu et al.’s algorithm [47] improves the AS path estimation

for a prefix destination (instead of AS) by exploiting the

known AS paths observed by globally-distributed BGP col-

lectors. To implement this algorithm, we use the snapshot

of 850 million AS paths to all IPv4 prefixes from 20 RIS

collectors [44] and 25 Routeviews vantage points [49]. The

collected AS paths are used to improve the simulation of

the BGP propagation of these AS paths.

• Akhoondi et al.’s algorithm [1] does not output a single

AS path between two ASes, unlike the other estimation

algorithms, but over-estimates a set of ASes that the traffic

likely traverses. The algorithm extracts all the segments

of three consecutive ASes that appear in the collected AS

paths from BGP collectors. Then it constructs all possible

paths from the computed segments with the consideration

of the given estimated length of the route between two

ASes.6 All unique ASes that appear in these paths are con-

sidered as the intermediate transit ASes between source

and destination ASes.

For the control-plane look-up scheme, we use a PEER-

ING client [50] to access the real-time inter-domain routes

installed at all PEERING servers. While there exist other

live BGP streaming frameworks that allow real-time access

to the collected routes (e.g., BGPStream [11], RIS Live [43]),

PEERING is the only publicly accessible platform that allows

both control-plane look-up and data-plane route measurement

to be performed on the same machine, to the best of our

knowledge. To get the up-to-date BGP paths, we take the

snapshots of the routing tables of all PEERING servers every

hour.

To calculate the accuracy of the three control-plane estima-

tion algorithms and the control-plane look-up mechanism, we

test whether the inferred routes correctly identify a potentially

malicious AS. If both the inferred and measured routes from a

node v to the same IP address include a potentially malicious

AS M, we consider the inferred route a True Positive. Figure 5

shows the confusion matrix that summarizes other evaluation

outcomes. Similar to our evaluation in Section 3.2, we con-

sider top-100 ASes as adversaries and our 59 measurement

nodes as the victim Bitcoin nodes. Hence, we have nearly

6,000 pairs when evaluating the three control-plane estimation

algorithms and 1,200 pairs when evaluating the control-plane

look-up scheme (because the route look-up is only applica-

ble to 12 PEERING nodes). With each attacker-victim pair,

we use TP, FP, FN, and TN to represent the total number of

6The Lastor system in the original paper queries the estimated length be-

tween two arbitrary ASes from the iPlane platform [36], which unfortunately

no longer operational at the time of this writing. Our implementation used

the estimated length from the Qiu et al.’s algorithm instead.

1260 30th USENIX Security Symposium USENIX Association

0

0.2

0.4

0.6

0.8

1

M
is

s
 R

a
te

Mao et al. Qiu et al. Akhoondi

et al.

Control-plane estimation algorithms

Control-plane

look-up

(a) Miss Rate.

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy
 R

at
e

Mao et al. Qiu et al. Akhoondi

et al.

Control-plane estimation algorithms

Control-plane

look-up

(b) Accuracy Rate.

Figure 6: Average Miss Rate and Accuracy Rate with the

standard deviation of the three control-plane estimation algo-

rithms and the control-plane look-up scheme.

True Positive, False Positive, False Negative, and True Neg-

ative inferred routes, respectively, among routes to all IPv4

addresses. We compute the Miss Rate or the False Negative

Rate (i.e., FN

TP+FN
) to denote the probability of misidentifying

an IP address as “not traversing AS M” when, in fact, the

route to the IP address does include M. The Miss Rate is

an important metric because it directly shows how often a

victim node v would misidentify an IP address sent by the at-

tacker AS M and connect to it. We also compute the accuracy

(i.e., TP+TN

TP+FP+FN+TN
) of all the route inference approaches.

Results. Figure 6a shows the average Miss Rate computed

from all attacker-victim pairs for four different route inference

mechanisms. Among all tested approaches, the control-plane

look-up mechanism yields the lowest average Miss Rate of

0.06. This means that RAP implementing the control-plane

look-up would miss, on average, only 6% of routes that in-

clude the malicious AS. The over-approximation algorithm

by Akhoondi et al. [1] also results in a similar Miss Rate. The

two other algorithms [37, 47] have the average Miss Rates of

0.35 and 0.25, respectively, making them unfit for the RAP

implementation. Such high Miss Rates may seem incorrect

to some, especially considering that these route estimation

algorithms, in particular Mao et al.’s algorithm [37], have

been so widely used in academic papers (e.g., [7, 19, 48, 58]

to name a few) for more than a decade. This can be explained

when we see the pretty high accuracy of most route estimation

algorithms in Figure 6b. The accuracy of two widely used

route inference models (see the two leftmost bars) is higher

than 97%, explaining why they have been widely used in ex-

isting works. The algorithm by Akhoondi et al. [1] has much

lower accuracy (e.g., 90%) because its primary purpose is to

over-estimate the intermediary ASes, not to infer a single AS

path accurately.

In a nutshell, most of the existing BGP route estimation

algorithms are highly accurate in inferring the overall view

of the BGP routes of today’s Internet. When it comes to

estimating an exclusion of a malicious AS M on a given path

that does include M for RAP, control-plane look-up is the

most suitable scheme with the lowest yet non-ideal Miss Rate

of 6%.

5.2 How to Exploit Route-inference Errors

Both the adversary AS and the victim Bitcoin node with RAP

can obtain the inferred routes and, as a result, an estimation

of the attacker IPs set. However, only the adversary AS can

obtain the ground-truth set of her IPs because the victim node

cannot accurately obtain the measured routes; refer to Sec-

tion 5.1 to see why direct route measurement by Bitcoin node

is impractical. This offers a fundamental asymmetric advan-

tage to the Erebus adversary compared to the victim Bitcoin

node because the victim has no reliable way of learning a

small subset of attacker IPs. Here, we discuss how the Ere-

bus adversary can exploit this new advantage to enhance her

attacks when RAP is deployed.

We clarify the key terminologies for two specific types of

IP addresses that are useful for attacks:

• Shadow IP: An IP address whose data-plane route from

the victim to itself includes a malicious AS. The attacker

AS can utilize shadow IPs to create peering connections

that will be under its control. We use the same terminology

from the Erebus attack [57].

• Hidden-shadow IP: A shadow IP address whose inferred

victim-to-itself route does not include the malicious AS.

All the shadow IPs correspond to the union of the True Pos-

itive and False Negative cases in Figure 5 because the ad-

versary AS M does exist on the data-plane paths towards

the IP addresses. Among the shadow IPs, some are hidden-

shadow IPs, and they correspond to the False Negative cases

in Figure 5 as the inferred routes to hidden-shadow IPs do not

include the adversary AS M.

Finding hidden-shadow IPs. An adversary AS can obtain

the accurate shadow-IP set. She can simply send a vic-

tim Bitcoin node an IP packet with a spoofed source IP p,

which triggers a response from the victim node (e.g., ping,

SYN). If the adversary AS sees a corresponding response

(e.g., ICMP Echo Reply, SYN/ACK) from the victim node, the

IP p is confirmed shadow. To obtain the shadow-IP set, the

adversary repeats the same process for all available IPv4

prefixes (about 800K) in the Internet. Note that the probe

packets sent to the victim node have all different source IP

addresses. To avoid suspicion, the adversary AS can spread

out the probing over a longer period of time. Also, to reduce

the number of probes to the victim node, the probing can

be made to other public servers (e.g., SSH, DNS, NTP, HTTP,

HTTPS) in the same subnet with the victim node. These public

servers can be easily found with widely available scanning

tools; e.g., Nmap [35], ZMap [16]. To obtain the hidden-

shadow-IP set, the adversary can infer the routes to the enu-

merated shadow IPs by following the RAP defense’s detailed

algorithms, which are supposed to be publicly available, and

remove the True Positive cases.

How many hidden-shadow IPs are found? Figure 7 shows

the availability of hidden-shadow IPs and their distribution in

1,200 attacker-victim scenarios; i.e., adversaries are top 100

USENIX Association 30th USENIX Security Symposium 1261

10
4

10
6

10
8

10
10

0

0.2

0.4

0.6

0.8

1

C
D

F

IPs

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

C
D

F

/16 prefixes

shadow IPs # hidden-shadow IPs

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

C
D

F

ASes

Figure 7: Cumulative distribution of shadow and hidden-

shadow IPs in terms of their number of IPs, /16 prefixes, and

ASes.

Figure 8: Number of shadow and hidden-shadow IPs in each

AS from one experiment with a specific adversary (AS3356)

and a victim (located in AS2637). The size of rectangles

indicates the number of shadow IPs, and their darkness shows

the ratio of hidden-shadow IPs to shadow IPs.

ASes, and victims are 12 PEERING servers.7 We compare

the shadow IPs and hidden-shadow IPs in terms of the CDF of

IP address count in each type and the number of /16 prefixes

and unique ASes hosting those IPs. Figure 7 shows that the

number of hidden-shadow IPs is significantly smaller than

the number of shadow IPs; for instance, there are only 24

thousand hidden-shadow IPs compared to 6 million shadow

IPs at the median case, see the first plot. Overall, the hidden-

shadow IPs are not plentiful; e.g., less than 15% of cases have

more than a million hidden-shadow IPs, see the dotted line.

Hidden-shadow IPs are also not well-diversified — in the vast

majority of cases (e.g., 90%), they are hosted in only less

than 120 distinct groups of /16 prefix and 80 unique ASes.

This is much more concentrated than the shadow IPs, which

are easily distributed in a few thousands of prefix groups and

ASes in the majority of cases.

For better visualization of how hidden-shadow IPs are dis-

tributed, we plot the details of hidden-shadow IP allocation

and their relationship with shadow IPs in a single attack ex-

ample, where the attacker is Level3 (AS3356) and the victim

node locates at Georgia Tech (AS2637), as shown in Fig-

ure 8. The number of shadow IPs in each AS is proportional

to the area of rectangles and the ratio of hidden-shadow IPs

to shadow IPs in that AS (up to 100%) is indicated by the

darkness of the rectangles. In this example, shadow IPs are

7We choose this evaluation set because the control-plane route look-up

scheme has the highest accuracy, see Section 5.1.

distributed in several thousands of ASes; yet, they tend to

concentrate at only a handful of them — more than half of

them belong to less than 10 ASes. Interestingly, Figure 8

also shows that in the majority of ASes, either all shadow

IPs are also hidden-shadow IPs (i.e., RAP misidentifies all

shadow IPs in this AS) or none of them is (i.e., RAP correctly

identifies all shadow IPs).

Exploiting hidden-shadow IPs to undermine RAP. When

the victim implements RAP, the Erebus adversary can adap-

tively prioritize inserting the hidden-shadow IPs to the victim

depending on the RAP defenses’ publicly available configura-

tion. For example, if the victim allows some of its estimated

connections to share a common AS (e.g., τ = 5), the attacker

can select some regular, non-hidden-shadow IPs along with

hidden-shadow IPs so that there are more attack IPs and they

also become more diversified. When a low threshold τ is

selected, the adversary may exclusively select and use hidden-

shadow IPs to attack the victim. Since hidden-shadow IPs

are quite limited in the majority of cases, there might be in-

sufficient distinct IPs to poison the victim with a desirable

attack rate (e.g., 2 IP/s). When this happens, the adversary re-

peatedly advertises the same hidden-shadow IP address from

multiple source IP addresses to increase the appearance of a

hidden-shadow IP in the victim’s peer database.

5.3 How (in)effective is RAP?

We use the same evaluation framework described in Sec-

tion 3.2, which includes about 6,000 attack scenarios, to eval-

uate the realistic impacts of RAP defense against the Erebus

attacker who can exploit the hidden-shadow IPs. For the incor-

poration of RAP in the emulator, we choose the control-plane

look-up mechanism because it achieves the lowest Miss Rate

of only 6%. When the control-plane route look-up is not

available, we synthesize the control-plane look-up results by

making some randomly selected prefixes containing hidden-

shadow IPs exclusively, adding a Miss Rate of 6% to the

data-plane routes. We configure RAP to have the median

threshold of τ = 5 (i.e., the victim allows an AS to appear

in at most five connections) in this evaluation and defer the

detailed evaluation of other τ thresholds to Section 6.2.

Contrary to the common belief, the RAP defense does not

demonstrate excessively powerful effectiveness. Figure 9

shows that when the victims do not implement RAP, the

attacker hijacks all of their connections within 350 days in

93% of attack instances, and when RAP is included, 60% of

instances are still successful, which is 33 percentage points of

reduction. The RAP defense generally extends the required

attack duration, yet, it is not significant. For example, to

isolate 50% of the victims, the attackers need about 60 days

when RAP is not deployed and no more than 100 days when

the victims implement RAP. Moreover, considering the victim

nodes’ lifespan, the attack success rate when the victims

implement RAP is still 33%, which is only 20 percentage

1262 30th USENIX Security Symposium USENIX Association

0 50 100 150 200 250 300 350

Attack execution time (days)

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

 f
u

n
ct

io
n

Without RAP

With RAP

(a) CDF of required attack time.

Without RAP With RAP
0

0.2

0.4

0.6

0.8

1

A
tt

ac
k

 s
u

cc
es

s
ra

te

(b) Attack success rate.

Figure 9: Cumulative distribution of the required execution

time and the attack success rate when Bitcoin client imple-

ments RAP.

points lower than the baseline scenario, see Figure 9b. These

results demonstrate that the RAP defense’s robustness turns

out to be insignificant when the Erebus attacker exploits the

hidden-shadow IPs, unfortunately.

To better understand the effectiveness of the Erebus attacks

with hidden-shadow IPs, we investigate how hidden-shadow

IPs get selected to be the peers of the victim. Figure 10 shows

how hidden-shadow IPs gradually occupy the new and tried

tables in three scenarios, in which the adversary utilizes a

small, medium, and large set of 10 thousand, 2.5 million, and

130 million hidden-shadow IPs, respectively. Note that we

show only the ratio of legitimate reachable IPs and hidden-

shadow IPs in the two tables in Figure 10 and exclude the

non-hidden-shadow IPs because they are identified by the

RAP defense and can occupy up to τ = 5 connections, making

the rest of the connections contested by legitimate reachable

IPs and the hidden-shadow IPs. Figure 10 shows that in all

three cases, the hidden-shadow IPs eventually dominate the

legitimate ones. With the medium and large set of hidden-

shadow IPs, the adversary can occupy the vast majority (e.g.,

> 95%) of new table slots as well as the large part of the IPs

(e.g., 70–80%) in the tried table, see Figure 10b and 10c.

With these highly dominated ratios, it is easily understand-

able that the attacks can be successful within a few weeks.

Figure 10a describes an interesting attack instance in which

only 10 thousand repeatedly-advertised hidden-shadow IPs

can dominate the legitimate IPs in the new table and occupy

a non-negligible ratio in the tried table. This demonstrates

that even a small amount of errors (e.g., 10 thousand misiden-

tified IPs) can circumvent the RAP defenses.

5.4 RAP in Bitcoin vs. RAP in Tor

The RAP approach turns out to be a no silver bullet for the

Erebus attack in Bitcoin, particularly because the infrequent

route inference errors still allow the Erebus adversaries to find

and use tens or hundreds of thousands of Sybil identities for

eclipse attacks. We investigate whether the same weakness of

the RAP approaches also seriously undermines the defense

efficacy of previous RAP-based defenses in similar Tor at-

Table 3: Attack success rates when victims implement combi-

nations of two tweaks. Green indicates that the combination

is better than both individual tweaks while yellow indicates

that the combination is better than only one of them.

Baseline: 0.547 T1 T2 T3 T4 T5 T6

T1 0.536 0.422 0.410 0.403 0.390 0.591

T2 0.386 0.409 0.311 0.309 0.427

T3 0.414 0.301 0.291 0.449

T4 0.406 0.247 0.408

T5 0.402 0.387

T6 0.609

tacks [1, 7, 45, 53], and find that the same weakness (despite

its existence) cannot be exploited in Tor. The biggest reason

is that, unlike the Bitcoin P2P network, Tor is not a fully

permissionless system. Tor is only partially permissionless

in the sense that anyone can volunteer to run Tor relays but

new relays must go through some rigorous bandwidth review

processes by the Tor infrastructure before they join the Tor

P2P network [56]. Therefore, even if a network attacker in

Tor finds large numbers of hidden-shadow IPs, she cannot

use them as her Sybil identities. In fact, the limited effect

of route-inference errors in RAP defenses in Tor has been

studied in a recent work [32], and our work on RAP in Bitcoin

shows a striking contrast.

6 Practical Integrated Countermeasures

In previous sections, we discuss the limitations of several sim-

ple protocol patches and the more complex RAP approaches,

and our empirical studies show that none of them sufficiently

mitigate the Erebus attacks alone. The next seemingly obvi-

ous step is to compose some of these available countermea-

sures hoping that their overall effectiveness will be sufficient

for handling the attacks in most practical scenarios. However,

such an integrated countermeasure is non-trivial to design

for two reasons: (1) the defense performance of available

countermeasures seems non-monotonic; and (2) there is no

one-size-fits-all RAP configuration in practice. This section

makes several practical suggestions to Bitcoin, including find-

ing a cost-effective combination of countermeasures (§6.1),

and the location-specific optimal configuration for RAP oper-

ation (§6.2).

6.1 Balancing the Efficacy and Costs of Sim-

ple Countermeasures

Erebus countermeasures’ efficacy is measured in the required

Erebus attack execution time, which can be translated into the

attack success rate in conjunction with the Bitcoin node churn

rate; see Section 3.2 for details. The cost of countermeasures

is less obvious to measure as it involves various forms of costs

incurred in different solutions; yet, one clear rule of thumb is

that the more countermeasures are activated, the more costly

the overall integrated countermeasure.

USENIX Association 30th USENIX Security Symposium 1263

Hidden-shadow IPsLegitimate reachable IPs

Attack duration (days)

%
new table

0 20 40 60

0

50

100
tried table

0 20 40 60

0

50

100

(a) Small set: 10K hidden-shadow IPs

Attack duration (days)

%

new table

0 20 40 60 80

0

50

100
tried table

0 20 40 60 80

0

50

100

(b) Medium set: 2.5M hidden-shadow IPs

Attack duration (days)

%

new table

0 20 40

0

50

100
tried table

0 20 40

0

50

100

(c) Large set: 130M hidden-shadow IPs

Figure 10: Ratios of hidden-shadow IPs (orange) and legitimate reachable IPs (gray) in new and tried tables when adversaries

find different numbers of hidden-shadow IPs.

Balancing the efficacy and costs of the available simple

solutions is, unfortunately, hard. The main reason is the non-

monotonicity of the efficacy of these countermeasures. To be

specific, activating more countermeasures does not necessar-

ily guarantee higher defense performance in terms of attack

success rate. Thus, in practice, we need to evaluate many

combinations and select a set of countermeasures given the

allowed countermeasure costs. For example, if only T1, T3,

and T5 are allowed to run in a Bitcoin node, the best combi-

nation of these three simple countermeasures should be found

after exhaustive evaluations of all possible combinations.

This section shows the non-monotonicity of these simple

countermeasures and presents an example of choosing the

best set of countermeasures.

Pairwise evaluation of T1–T6. To investigate the impact of

the tweaks on each other’s effectiveness, we test the com-

bination of any two tweaks using our evaluation framework

(See Section 3.2) and show the attacks’ success rates against

clients implementing such combinations in Table 3. Overall,

the tweaks T4 and T5 demonstrate stronger defense perfor-

mance when combining with other tweaks than they do alone.

For instance, combining T4 and T5 brings the attack success

rate down to 24.7%, which is 30 percentage points lower

than the baseline (i.e., no countermeasures deployed). The

tweaks T1–T3 also show generally promising results when

combining with others, except that a few combinations yield

even worse defense performance than the individual tweaks

(e.g., (T1, T2) versus T2), showing the non-monotonicity of

these countermeasures in general. Also, the protocol tweak

T6 reduces the effectiveness of all other tweaks except T5.

An example. We consider a hypothetical Bitcoin node op-

erator who is willing to try many simple countermeasures

in this example. The operator, however, may learn that the

performance of T6 alone is even worse than the baseline and

decide not to activate T6. The operator then evaluates all

tweak combinations composed from the five other tweaks

T1–T5 and compares their defense effectiveness in Figure 11.

In particular, when combining three tweaks (T3, T4, T5), we

see the lowest attack success rate of 20.9% (see the right-most

blue bar) among all combinations of three tweaks. The or-

ange bars show that adding T1 or T2 into (T3, T4, T5) only

makes negligible improvements as the attack success rates

(T
1,

T2,
T3)

(T
1,

T2,
T4)

(T
1,

T2,
T5)

(T
1,

T3,
T4)

(T
1,

T3,
T5)

(T
1,

T4,
T5)

(T
2,

T3,
T4)

(T
2,

T3,
T5)

(T
2,

T4,
T5)

(T
3,

T
4,

T
5)

(T
1,

T2,
T3,

T4)

(T
1,

T2,
T3,

T5)

(T
1,

T2,
T4,

T5)

(T
1,

T3,
T4,

T5)

(T
2,

T3,
T4,

T5)

(T
1,

T
2,

T
3,

T
4,

T
5)

Tweak combination

0

0.2

0.4

0.6

0.8

1

A
tt

ac
k

 s
u

cc
es

s
ra

te

Figure 11: Attack success rates when Bitcoin nodes imple-

ment any combinations of tweaks T1–T5.

1 2 3 4 5 6 7 8 9 10

Threshold

0

0.2

0.4

0.6

0.8

1

A
tt

ac
k
 s

u
cc

es
s

ra
te

(a) Attack success rates.

1 2 3 4 5 6 7 8 9 10

Threshold

0

2

4

6

8

10

A
v
er

ag
e

n
u
m

b
er

 o
f

co
n
n
ec

ti
o
n
s

(b) Average numbers of es-

tablished connections.

Figure 12: Attack success rates and the average number of

established connections for different τ values.

are still 20.4% and 20.6%, respectively. Lastly, the right-most

bar shows the combination of tweaks (T1, T2, T3, T4, T5)

with a success rate of 20.2%, which is only minutely better

than (T3, T4, T5). Understanding this small performance

gain from adding T1 and T2, the operator may find the best

operating point with the three tweaks (T3, T4, T5). Note that

this decision is given only as an example, and Bitcoin node

operators with varying degrees of willingness to allow the

simple tweaks may find other combinations more appropriate.

6.2 Location-based Customization of RAP

When operating the RAP defense (§4) in practice, a Bitcoin

node operator should decide how strictly the RAP policy

should be enforced. The threshold τ (1 ≤ τ ≤ 10) is used

to control this: the low value of τ strictly enforces the peer

1264 30th USENIX Security Symposium USENIX Association

connections to share a small number (or zero if τ = 1) of

common intermediate ASes, and a high value of τ allows

many peer connections to share the same AS on their paths.

It may seem straightforward to choose τ, as a more effective

defense (e.g., a lower attack success rate) is expected with a

lower τ value. Here, we show the opposite — choosing the

proper threshold is non-trivial.

Effect of different τ values. To understand how different τ

values affect the RAP effectiveness, we extend our experi-

ment in Section 5.2 to evaluate RAP with all values of τ (i.e.,

1 ≤ τ ≤ 10) against the Erebus attacks. We present the rate

of successful attacks in almost 6,000 scenarios in Figure 12a.

It shows that the overall attack success rates do not change

significantly across different values of τ, and the rates even

increase as τ decreases in the range 1≤ τ≤ 3. This may look

counterintuitive at first; however, it can be explained by Fig-

ure 12b in which we present the average number of established

outgoing connections of the target nodes in our evaluations.

It shows that our victim nodes have to avoid choosing many

peers aggressively and may not have full connectivity to ten

other nodes when the RAP is too strictly enforced (i.e., τ is

set to a low value). For example, with τ = 1, the victim nodes

in our experiments can make only five connections on aver-

age. When the number of outgoing connections decreases, it

becomes easier to hijack all of them!

Bitcoin node’s location and τ. The results in Figure 12a

show that strict enforcement of RAP (e.g., τ = 1) yields a sub-

optimal defense performance when measuring the average

performance across all 59 target Bitcoin nodes in our evalua-

tion. We, however, conjecture that the defense performance

of RAP may highly vary depending on the route diversity of

a specific Bitcoin node, and thus the choice of τ should also

consider the location of the node on the Internet topology.

The rationale behind our conjecture is that some nodes in a

well-connected network may be able to establish most of the

ten outgoing connections even with a low τ value.

To see how different locations of Bitcoin nodes affect the

choice of τ, we pick three examples in which the victims are

located at vastly different topological locations on the Internet

(i.e., two at cloud providers, one at university network) in

Figure 13. We measure the attack success rate and the number

of established connections for three specific Bitcoin nodes

against the Erebus attacks from the top-100 large ASes. The τ

values that yield the lowest attack success rates are τ = 1, τ =
5, and τ = 9 for the three Bitcoin nodes, respectively. These

best τ values coincide with the smallest τ values that make

the victims fully connected with all ten outgoing connections

in most cases. These results confirm that the choice of τ

significantly depends on where on the AS topology individual

Bitcoin nodes are located.

Finding the optimal τ. From the above experiments, we

learn that it is desirable to choose a minimum possible τ value

that ensures all ten outgoing connections are established. For

an easier expression of this aspect, we define the desired

Algorithm 1 Find the optimal threshold τ for Bitcoin node v.

Require: κ: the desired lower-bound for available IPs.

G1,G2, ...,Gn: groups of IPs having the same first-hop AS on their paths from v

(|G1| ≥ |G2| ≥ · · · ≥ |Gn| > 0).

Ensure: τoptimal : the optimal threshold.

1: procedure FINDOPTIMALTHRESHOLD

2: τoptimal ← 10

3: for τ← 1 to 9 do ⊲ try smaller thresholds first.

4: A ← SUM(|G1|, · · · , |Gn|) ⊲ number of available IPs.

5: idx← 1 ⊲ start with the biggest group G1.

6: cnt← 0 ⊲ count IPs from the same group.

7: for i← 1 · · ·9 do ⊲ try to select 9 peers.

8: Peeri← Gidx.POP() ⊲ select from Gidx.

9: cnt← cnt+1

10: A ← A−1

11: if cnt≥ τ∨|Gidx|= 0 then ⊲ done with Gidx.

12: A ← A−|Gidx|
13: idx← idx+1 ⊲ move to the next group.

14: cnt← 0

15: end if

16: end for

17: if A≥ κ then ⊲ enough IPs for the 10th connection.

18: τoptimal ← τ

19: break

20: end if

21: end for

22: return τoptimal

23: end procedure

lower-bound for available peer IPs, κ, set by each Bitcoin

node operator. It ensures that there are at least κ IPs (among

all reachable IPs in its database) that have not been marked

as unavailable by RAP before any connection establishment.

Algorithm 1 outlines an efficient computation for selecting

an optimal τ value for RAP, given the topology of a Bitcoin

node and its operator’s desired κ value. At a high level, we

test all τ values and consider the lowest threshold that sat-

isfies κ as optimal. A threshold τ is said to satisfy κ if the

IP availability for the last connection in the worst connectiv-

ity scenario (i.e., the lowest IP availability possible) is still

sufficient. We greedily construct the worst scenario of connec-

tivity based on two following intuitions. First, we can group

all available IPs based on the first-hop AS on the paths from

the victim node to them, whereas at most τ IPs can be chosen

from each group during the connection establishments. When

no first-hop AS appears in more than τ connections, it also

implies that no other AS does because in all paths from the

Bitcoin node, the occurrences of an AS is no more than the

occurrences of the first-hop AS on the paths to that AS. Let

us call G1,G2, ...,Gn groups of IPs having the same first-hop

ASes from the Bitcoin node to them. Second, to minimize

the IP availability for the last connection, we should prefer

the larger groups when establishing the other connections be-

cause all but τ IPs from those groups will become unavailable.

Particularly, in Algorithm 1, we start with setting τ = 1 for

RAP (Line 3) and establish nine connections while preferring

the peers from bigger IP groups (Line 7–16). We then check

if the availability of IPs for the tenth connection satisfies κ

and if it is, the current τ value is optimal; see Line 17–20.

Otherwise, we repeat the above process with a higher τ value

until the constraint regarding κ is satisfied.

USENIX Association 30th USENIX Security Symposium 1265

Threshold

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

A
tt

ac
k
 s

u
cc

es
s

ra
te

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

A
v
er

ag
e

n
o
.
o
f

co
n
n
ec

ti
o
n
s

(a) Victim location: London (AS16509)

Threshold

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

A
tt

ac
k
 s

u
cc

es
s

ra
te

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

A
v
er

ag
e

n
o
.
o
f

co
n
n
ec

ti
o
n
s

(b) Victim location: Bangalore (AS14061)

Threshold

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

A
tt

ac
k
 s

u
cc

es
s

ra
te

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

A
v
er

ag
e

n
o
.
o
f

co
n
n
ec

ti
o
n
s

(c) Victim location: Atlanta (AS47065)

Figure 13: Attack success rates and the average number of established connections of three victims.

 London

 (AS160509)

 Bangalore

 (AS14061)

 Atlanta

 (AS47065)

 All locations

 (averaged results)

Victim location

0

0.2

0.4

0.6

0.8

1

A
tt

ac
k
 s

u
cc

es
s

ra
te

No RAP, no tweak

Tweaks (T3, T4, T5)

Optimal RAP

Optimal RAP + Tweaks (T3, T4, T5)

Figure 14: Attack success rate when three victims implement

RAP combined with some protocol tweaks.

Combing RAP and tweaks. Here, we attempt to combine

the optimal RAP defenses with some effective protocol tweak

combinations discussed in previous sections to show their in-

tegrated defense performance. Following the example above,

we implement the combination of the tweaks (T3, T4, T5)

along with RAP with the optimal τ values8 in all victim clients.

We show the success rates of the attacks against them and

highlight three victim examples (i.e., located in London, Ban-

galore, and Atlanta) in Figure 14. Figure 14 shows that com-

bining RAP and tweaks makes the most effective countermea-

sure against the Erebus attacks as the attack success rates drop

to 2–8% in three examples and only 3% on average.

6.3 Responsible Disclosure

We have disclosed our findings to the Bitcoin Core secu-

rity team in late December 2020. The Bitcoin Core de-

velopers acknowledged the effectiveness of the RAP ap-

proach and are seeking extensive discussions before its de-

ployment. Regarding the simple protocol tweaks, we learn

that the team has been implementing a slightly different IP-

to-ASN mapping for the tweak T1, see Appendix C for

more details. Also, the tweaks T2 and T3 are being ac-

tively implemented while T4 and T5 are in consideration

as of this writing. We will keep updating the status of these

countermeasures on our public project webpage at https:

//erebus-attack-countermeasures.github.io/.

8When combining RAP and tweak T3, the optimal τ threshold for RAP

should be adjusted accordingly to the increased number of connections.

7 Related Work

7.1 Security Research in Blockchain Net-

works

Security breaches in the P2P layer of blockchain networks of-

ten cause significant damage to the entire blockchain systems

as the P2P layer is the fundamental underlying network of the

consensus and transaction layers.

Eclipse attacks and defenses. In recent years, several attacks

have shown that eclipsing the P2P networks of blockchain

systems is possible [4, 8, 27, 28, 38, 57]. Earlier eclipse at-

tacks [27] utilize small-size botnets and exploit specific vul-

nerabilities of the Bitcoin client software to partition one or

more nodes from the P2P networks. Similar attacks that ex-

ploit the implementation bugs of Ethereum have also been

presented [28, 38]. Most of these vulnerabilities have been

quickly fixed by Bitcoin and Ethereum communities, render-

ing these attacks ineffective. More recent studies show that

a malicious AS can control all the connections of a targeted

Bitcoin node via launching a BGP hijacking attack [4]. As

a solution to this Bitcoin hijacking attack, a new Bitcoin re-

lay system, called SABRE [3], that is designed to be robust

against BGP hijacking attacks. There also exists an eclipse at-

tack that specifically targets Bitcoin nodes connecting via Tor

bridges by exploiting the anti-DoS mechanism in Bitcoin [8].

Relays and Bitcoin security. Although Bitcoin is designed

as a fully decentralized P2P network, a special type of peer

nodes, called relays, have been proposed for performance and

security purposes. Fast relay networks, such as Falcon [18]

and FIBRE [20], have been used to speed up the block data

propagation between a closed group members. SABRE [3]

is a special relay that guarantees BGP-hijacking-free peering.

One may be tempted to rely on such existing relays or even

introduce more relays to diversify his/her Bitcoin nodes’ con-

nectivity in the hope that it will mitigate the Erebus attacks.

However, it is a far-from-ideal approach to handling the Ere-

bus attacks. First, there still exist non-negligible chances that

some malicious transit ASes are on the paths to the relays.

Second, perhaps more importantly, the reliance on a small

number of relays for P2P operations makes the relay infras-

tructure effectively a centralized regulating authority. Relays

may be used as a temporary measure when no good coun-

termeasures to Erebus exist but they cannot be a long-term

1266 30th USENIX Security Symposium USENIX Association

solution. In this paper, we focus on the solutions that do not

hurt the openness and decentralization of Bitcoin.

7.2 Routing Awareness in Tor

Our work is the first to thoroughly evaluate the ideas of routing

awareness in blockchain systems. In fact, the idea of RAP

has been already investigated several times in Tor [1,7,17,19,

32, 45, 53]. These Tor systems employ routing awareness by

using inter-domain route inference algorithms (e.g., Mao et

al.’s algorithm [37]) to estimate a common, suspicious AS that

appears on both connections from a client to a Tor entry node

and from a Tor exit node to a destination, similar to how we

implement RAP in Bitcoin. Juen et al. [32] also compare the

inferred AS paths of the Tor connections with the data-plane

paths and report an overall 80% difference between them.

These routing-aware mechanisms developed for Tor cannot

be directly used for Bitcoin because the semi-permissionless

nature of Tor network is fundamentally different from that of

Bitcoin, see more detailed discussion in Section 5.4.

8 Conclusion

Perhaps, we may have been building a house of cards when

we keep inventing new blockchain consensus ideas while rely-

ing on the P2P networks that are easy to eclipse. We attempt

to address one recent eclipse attack that exploits a powerful

network-Sybil capability, with the practicality of countermea-

sures as the top priority. Our critical evaluation shows that

one highly promising countermeasure, called routing-aware

peering (RAP), yields disappointing defense performance due

to its weakness. Yet, we confirm that Bitcoin can be protected

from most Erebus attacks when these available countermea-

sures are carefully optimized and customized for each node.

We believe that our work helps us take a step towards highly

reliable blockchain P2P networking protocols.

Acknowledgments

We thank the anonymous reviewers of this paper and our

shepherd Yixin Sun for their helpful feedback. We also thank

Inho Choi for the useful comments on early versions of this

paper and help in traceroute experiments. This work uses

measurements from the PEERING testbed, which cannot be

done without support from Italo Cunha and other team mem-

bers. We also thank Gleb Naumenko and other Bitcoin Core

developers for the discussion on RAP and protocol tweaks pre-

sented in this paper. This work was supported by Institute for

Information & communications Technology Planning & Eval-

uation (IITP) grant funded by the Korea government (MSIT)

(No.2019-0-01343, Regional strategic industry convergence

security core talent training business) and the CRYSTAL Cen-

tre at National University of Singapore.

References

[1] Masoud Akhoondi, Curtis Yu, and Harsha V Madhyastha.

LASTor: A low-latency AS-aware Tor client. In Proc. IEEE

S&P, 2012.

[2] Ehab Al-Shaer, Qi Duan, and Jafar Haadi Jafarian. Ran-

dom host mutation for moving target defense. In Proc. Se-

cureComm, 2012.

[3] Maria Apostolaki, Gian Marti, Jan Müller, and Laurent Van-

bever. SABRE: Protecting Bitcoin against Routing Attacks.

In Proc. NDSS, 2019.

[4] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijack-

ing Bitcoin: Routing attacks on cryptocurrencies. In Proc.

IEEE S&P, 2017.

[5] asmap-rs. https://github.com/rrybarczyk/asmap-rs,

2020.

[6] Erebus Attack. Bitcoin emulator, 2020. https://github.

com/Erebus-Attack/Bitcoin-Emulator.

[7] Armon Barton and Matthew Wright. DeNASA: Destination-

Naive AS-Awareness in Anonymous Communications. In

Proc. PETS, 2016.

[8] Alex Biryukov and Ivan Pustogarov. Bitcoin over Tor isn’t a

good idea. In Proc. IEEE S&P, 2015.

[9] CAIDA. AS Rank: A ranking of the largest Autonomous

Systems (AS) in the Internet, 2020. https://asrank.caida.

org/.

[10] CAIDA. AS Relationships, 2020. http://www.caida.org/

data/as-relationships/.

[11] CAIDA. BGPStream, 2020. https://bgpstream.caida.

org/.

[12] CAIDA. Routeviews Prefix to AS mappings Dataset (pfx2as)

for IPv4 and IPv6, 2020. https://www.caida.org/data/

routing/routeviews-prefix2as.xml.

[13] Bitcoin Core. Bitcoin Core 0.21.0, 2021. https://

bitcoincore.org/en/releases/0.21.0/.

[14] Joan Antoni Donet Donet, Cristina Pérez-Sola, and Jordi

Herrera-Joancomartí. The bitcoin P2P network. In Proc.

FC, 2014.

[15] John R Douceur. The Sybil attack. In Springer IPTPS, 2002.

[16] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. ZMap:

Fast Internet-wide scanning and its security applications. In

Proc. USENIX Security, 2013.

[17] Matthew Edman and Paul Syverson. AS-awareness in Tor path

selection. In Proc. ACM CCS, 2009.

[18] Falcon. A Fast Bitcoin Backbone, 2016. https://www.

falcon-net.org/.

[19] Nick Feamster and Roger Dingledine. Location diversity in

anonymity networks. In Proc. ACM WPES, 2004.

[20] FIBRE. Fast Internet Bitcoin Relay Engine, 2020. http:

//bitcoinfibre.org/.

[21] William Foxley. Latest Bitcoin Core Code Release Protects

Against Nation-State Attacks. CoinDesk, 2020.

USENIX Association 30th USENIX Security Symposium 1267

[22] Lixin Gao. On inferring autonomous system relationships in

the Internet. IEEE/ACM TON, 2001.

[23] Phillipa Gill, Michael Schapira, and Sharon Goldberg. A

survey of interdomain routing policies. ACM SIGCOMM CCR,

2013.

[24] Jivika Govil, Jivesh Govil, Navkeerat Kaur, and Harkeerat

Kaur. An examination of IPv4 and IPv6 networks: Constraints

and various transition mechanisms. In Proc. IEEE Southeast-

Con, 2008.

[25] Ethan Heilman. Added test-before-evict discipline in Ad-

drman, feeler connections, 2015. https://github.com/

bitcoin/bitcoin/pull/6355.

[26] Ethan Heilman. net: Feeler connections to increase online ad-

drs in the tried table, 2016. https://github.com/bitcoin/

bitcoin/pull/8282.

[27] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Gold-

berg. Eclipse Attacks on Bitcoin’s Peer-to-Peer Network. In

Proc. USENIX Security, 2015.

[28] Sebastian Henningsen, Daniel Teunis, Martin Florian, and

Björn Scheuermann. Eclipsing Ethereum Peers with False

Friends. In Proc. IEEE EuroS&PW, 2019.

[29] Muhammad Anas Imtiaz, David Starobinski, Ari Trachtenberg,

and Nabeel Younis. Churn in the Bitcoin Network: Characteri-

zation and impact. In Proc. ICBC, 2019.

[30] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Openflow

random host mutation: transparent moving target defense using

software defined networking. In Proc. HotSDN, 2012.

[31] Sushil Jajodia, Anup K Ghosh, Vipin Swarup, Cliff Wang, and

X Sean Wang. Moving target defense: creating asymmetric

uncertainty for cyber threats. Springer Science & Business

Media, 2011.

[32] Joshua Juen, Aaron Johnson, Anupam Das, Nikita Borisov,

and Matthew Caesar. Defending tor from network adversaries:

A case study of network path prediction. In Proc. PETS, 2015.

[33] Thomas Kernen. Public route server and looking glass site list,

2011. http://www.traceroute.org/.

[34] Matthew Luckie. Scamper: a scalable and extensible packet

prober for active measurement of the internet. In Proc. ACM

IMC, 2010.

[35] Gordon Fyodor Lyon. Nmap network scanning: The official

Nmap project guide to network discovery and security scanning.

Insecure, 2009.

[36] Harsha V Madhyastha, Tomas Isdal, Michael Piatek, Colin

Dixon, Thomas Anderson, Arvind Krishnamurthy, and Arun

Venkataramani. iPlane: An information plane for distributed

services. In Proc. OSDI, 2006.

[37] Z Morley Mao, Lili Qiu, Jia Wang, and Yin Zhang. On AS-

level path inference. In ACM SIGMETRICS PER, 2005.

[38] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-

Resource Eclipse Attacks on Ethereum’s Peer-to-Peer Network,

2018. https://eprint.iacr.org/2018/236.

[39] Steven J Murdoch and Piotr Zieliński. Sampled traffic analysis

by internet-exchange-level adversaries. In Proc. PETS, 2007.

[40] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash

System, 2009.

[41] Gleb Naumenko. p2p: supplying and using asmap to im-

prove IP bucketing in addrman, 2020. https://github.

com/bitcoin/bitcoin/pull/16702.

[42] Gleb Naumenko, Gregory Maxwell, Pieter Wuille, Alexandra

Fedorova, and Ivan Beschastnikh. Erlay: Efficient Transaction

Relay for Bitcoin. In Proc. ACM CCS, 2019.

[43] RIPE NCC. RIS Live - RIPE Network Coordination Centre,

2020. https://ris-live.ripe.net/.

[44] RIPE NCC. RIS Raw Data, 2020. https:

//www.ripe.net/analyse/internet-measurements/

routing-information-service-ris/ris-raw-data.

[45] Rishab Nithyanand, Oleksii Starov, Adva Zair, Phillipa Gill,

and Michael Schapira. Measuring and mitigating AS-level

adversaries against Tor. In Proc. NDSS, 2016.

[46] PlanetLab. An open platform for developing, deploying,

and accessing planetary-scale services, 2020. https://www.

planet-lab.org/.

[47] Jian Qiu and Lixin Gao. AS path inference by exploiting

known AS paths. In Proc. IEEE GLOBECOM, 2005.

[48] Tongqing Qiu, Lusheng Ji, Dan Pei, Jia Wang, Jun (Jim) Xu,

and Hitesh Ballani. Locating Prefix Hijackers using LOCK.

In Proc. USENIX Security, 2009.

[49] Routeviews. University of Oregon Route Views Project, 2020.

http://www.routeviews.org/routeviews/.

[50] Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-

Bassett. PEERING: Virtualizing BGP at the Edge for Research.

In Proc. ACM CoNEXT, 2019.

[51] Atul Singh, Miguel Castro, Peter Druschel, and Antony Row-

stron. Defending against eclipse attacks on overlay networks.

In Proc. ACM SIGOPS European Workshop, 2004.

[52] Hennadii Stepanov. Try to preserve outbound block-relay-only

connections during restart, 2020. https://github.com/

bitcoin/bitcoin/pull/17428.

[53] Yixin Sun, Anne Edmundson, Nick Feamster, Mung Chiang,

and Prateek Mittal. Counter-RAPTOR: Safeguarding Tor

Against Active Routing Attacks. In Proc. IEEE S&P, 2017.

[54] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li,

Jennifer Rexford, Mung Chiang, and Prateek Mittal. RAPTOR:

Routing attacks on privacy in Tor. In Proc. USENIX Security,

2015.

[55] Renata Teixeira, Aman Shaikh, Tim Griffin, and Jennifer Rex-

ford. Dynamics of hot-potato routing in IP networks. In Proc.

of SIGMETRICS, 2004.

[56] Tor. The lifecycle of a new relay. https://blog.

torproject.org/lifecycle-new-relay, 2013.

[57] Muoi Tran, Inho Choi, Gi Jun Moon, Anh V. Vu, and Min Suk

Kang. A Stealthier Partitioning Attack against Bitcoin Peer-to-

Peer Network. In Proc. IEEE S&P, 2020.

[58] Jian Wu, Ying Zhang, Z Morley Mao, and Kang G Shin. Inter-

net routing resilience to failures: analysis and implications. In

Proc. ACM CoNext, 2007.

[59] Addy Yeow. Global Bitcoin nodes distribution, 2020. https:

//bitnodes.io/.

1268 30th USENIX Security Symposium USENIX Association

A A Large-scale Data-plane Route Measure-

ment

Figure 15: A map of geographic locations of our 21 cloud

instances (red pins), 26 PlanetLab nodes (blue pins), and 12

PEERING servers (black pins).

We perform a large-scale measurement to record the data-

plane routes from 59 distributed nodes across the world

to all available IPv4 prefixes. Particularly, in December

2019, we send out in total 47.2 million traceroute probes

from 21 instances hosted at different regions of five popular

cloud providers (i.e., Amazon, OVH, DigitalOcean, Hetzner,

and Alibaba), 26 PlanetLab nodes [46], and 12 PEERING

servers [50]. We visualize the geographical distributions of

our measurement nodes in Figure 15. We note that none

of these nodes are located at top-100 ASes, hence there is

no overlapping with the list of attackers that we consider in

most of our experiments in this paper. The destinations of

the traceroute probes are approximate 800 thousand IP

addresses that are randomly selected from all IPv4 prefixes

in the Internet. We assume all IPs in the same prefix would

have the same route as the randomly selected IP. We perform

the measurements in parallel using the state-of-the-art tool

scamper [34] at the rate of 400 packets per second where

each set of measurements from one node to all destinations is

finished in less than 20 hours. Then, we use the Routeviews

Prefix-to-AS mapping [12] to convert the traceroute re-

sults into AS-level paths. Finally, we remove all unreachable

hosts or hosts that do not belong to any mapping AS in all

measured paths.

B IP churn rate of Bitcoin nodes

For a more realistic evaluation of the Erebus attacks, we study

the IP churn rate of the actual Bitcoin nodes by measuring

their online duration before they leave the system. We re-

trieve two years’ worth of data (from January 1, 2018, to De-

cember 31, 2019) provided by Bitnodes — an online service

that periodically takes the snapshots of all reachable Bitcoin

addresses [59]. We consider an IP address that appears in

two consecutive Bitnodes snapshots is online between two

timestamps when the snapshots were taken. Following this,

we compute the total online duration (in days) of about 340

thousand distinct Bitcoin addresses observed in this two-year

period and plot the distribution in Figure 16. Figure 16 shows

10
0

10
1

10
2

10
3

Online duration D (days)

10
0

10
1

10
2

10
3

10
4

10
5

N
u

m
b

er
 o

f
B

it
co

in
 n

o
d

es

o

n
li

n
e

fo
r

D
 d

ay
s

Pr[D 30]

 = 0.8253

Pr[D > 30]

 = 0.1747

Pr[D >130]

 = 0.0731 Pr[D > 380]

 = 0.0208

30 130 380

Figure 16: The online duration distribution (in days) of 340

thousand reachable Bitcoin nodes observed by Bitnodes [59]

in two years from January 1, 2018 to December 31, 2019.

Pr[·] indicates the empirical probability distribution of the

online duration.

that the Bitcoin network has a high churn rate. The vast ma-

jority (e.g., 82.53%) of the Bitcoin nodes are fairly short-lived

— they become unreachable within 30 days, which is well-

aligned with an existing one-month measurement done by

Donet et al. [14]. On the other hand, only 7.3% of the nodes

were online for more than 130 days and 2% of nodes (i.e.,

about 6.8 thousand IPs) were online for over 2 years.

The IP churn rate distribution is crucial when it comes to

the evaluation of the Erebus attacks. When evaluating whether

the attack is successful against a specific victim, we calculate

the required attack execution time and consider a random

online duration from the distribution to be the lifespan of the

victim node. Note that short-lived nodes (i.e., nodes that are

online for less than 30 days) are excluded from the considera-

tion because the usual targets of Erebus attacks are long-lived

and highly influential Bitcoin nodes, such as mining pool

gateways [57].

C Implementations of IP-to-AS Mapping

The basic principle of the tweak T1 (i.e., ASN-based group-

ing) is an IP-to-ASN mapping that maps any IP address to

the AS number of the AS representing it. Given a set of at-

tacker IPs, a mapping that groups them in a fewer number

of groups is generally preferred because they will likely oc-

cupy fewer slots in the two tables, thus decreasing the attack

success rate. In this paper, we take a simple approach that

maps an IP address to the ASN of its actual owner, i.e., an

IP-to-owner-AS mapping. During our disclosure with Bit-

coin Core developers (see Section 6.3), we learn that they

are implementing an uncommon, more sophisticated IP-to-

bottleneck-AS mapping, which was still being discussed at

the time we evaluated the tweak T1 [5]. In this section, we

describe this IP-to-bottleneck-AS implementation and show

that it is only marginally different from our mapping imple-

mentation in terms of effectiveness.

Particularly, the IP-to-bottleneck-AS mapping maps an IP

address to a so-called bottleneck AS, which is the first com-

mon AS that appears on all AS-paths collected by multiple

USENIX Association 30th USENIX Security Symposium 1269

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

C
D

F

/16 prefix

owner AS

bottleneck AS

Figure 17: Cumulative distribution of attacker IPs in terms

of their number of /16 prefixes, owner ASes, and bottleneck

ASes.

Nov 15 Nov 20 Nov 25 Nov 30 Dec 5 Dec 10 Dec 15
0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f
p

at
h

 c
h

an
g

es
 t

o
 a

ll
 p

at
h

s

Bangalore

Frankfurt

New York

San Francisco

Singapore

Figure 18: The ratio of AS-level paths that have changed

compared to the previous day. The measurements are done

from five DigitalOcean regions in a one-month period (from

November 15, 2019, to December 15, 2019).

BGP collectors (e.g., RIPE RIS [44]) that destined to the IP

address. Similarly, a Bitcoin operator can individually calcu-

late the mapping with AS-paths retrieved from local routing

table dumps. Intuitively, if attacker IPs are distributed in mul-

tiple single-homed ASes, this implementation would make a

smaller number of groups than the IP-to-owner-AS mapping

because the IPs tend to share common upstream ASes. On

the other hand, it can be worse if a majority of IPs are from

the same multi-homed AS and mapped to multiple bottleneck

ASes.

To highlight the differences between three mapping op-

tions (i.e., the original /16 prefix, IP-to-owner-AS, and IP-to-

bottleneck-AS), we show the distributions of attacker IPs in

5900 scenarios (see Section 3.2) in term of number of /16

prefixes, number of owner ASes, and number of bottleneck

ASes in Figure 17. It shows that using both IP-to-AS map-

pings makes smaller numbers of groups than using the /16

prefix mapping. Also, the IP-to-bottleneck-AS mapping is

shown to be insignificantly better than our IP-to-owner-AS

implementation, e.g., the number of cases having 100 or fewer

groups is increased by only ten percentage points.

D (In)stability of Data-plane Routes

The third option of the inference logic is the data-plane mea-

surement scheme — a Bitcoin node measures the routes via

sending traceroute probes to its peers. The main problem

of this approach, which makes it unusable, is that a malicious

AS, which is already on the paths of the traceroute probes,

can easily manipulate the measurement results so that the

paths look benign (e.g., the results do not include the mali-

cious AS). For instance, the malicious AS can respond to

the probe with another AS’s IP address, or simply drop the

probing packet.

One may argue that a victim Bitcoin node can still de-

tect such manipulation by looking for anomalies of the

traceroute paths based on its longitudinal history. For ex-

ample, if the AS-level paths obtained via traceroute probes

to the same IP address suddenly change, it may indicate that

the traceroute probes may have been manipulated by a

malicious AS. Our analysis, however, shows that such detec-

tion is difficult in practice. The reason is that the AS-level

paths are already quite unstable, even when there exist no

such attacks, and thus it is hard to distinguish sudden AS-path

changes due to malicious activities from the frequent benign

AS-path changes.

Here, we investigate the natural instability of traceroute

measurements at the AS-level. Our analysis begins with mea-

suring the data-plane paths from five nodes hosted at dif-

ferent regions of the DigitalOcean network (i.e., Bangalore

(India), Frankfurt (Germany), New York (US-East), San Fran-

cisco (US-West), and Singapore) to all 800 thousand available

IPv4 prefixes in the Internet, see Appendix A. The same set

of experiments is repeated every day for one month (from

November 15, 2019, to December 15, 2019). In each day,

we compute the number of AS paths that have changed in

comparison with the paths to the same destinations one day

earlier. Figure 18 shows the ratio of path changes to all paths

in each day from nodes in five regions. The data-plane paths

at AS-level appear to be quite stable in general — about 90%

of the paths measured from all regions (except Bangalore)

are unchanged within one day period. However, this also

means that 10% of the measured AS-level paths (i.e., about

80K) change within one day period. The measurements at

Bangalore show a more dynamic behavior of the changing

paths, in which about one-fourth of the paths are different

from what they were in the previous day.

This non-negligible amount of AS-level path changes

makes it difficult to find a practical threshold for anomaly

detection. Worse, a malicious AS, knowing that a portion of

the paths from the victim would change frequently, can slowly

manipulate the traceroute results within the threshold to

circumvent the detection. In conclusion, detecting the manip-

ulation in data-plane measurements is extremely challenging

and thus the data-plane measurement scheme cannot be used

in practice for RAP.

1270 30th USENIX Security Symposium USENIX Association

