
Uncovering Hidden Proxy Smart Contracts for

Finding Collision Vulnerabilities in Ethereum
Cheng-Kang Chen, Wen-Yi Chu, Muoi Tran, Laurent Vanbever, Hsu-Chun Hsiao

IEEE ICDCS 2025

Glasgow, Scotland, UK

21 July 2025

Two swords cannot

be in the same sheath

2

Two smart contracts cannot

“be” in the same storage/function

3

Two smart contracts cannot

“be” in the same storage/function

4

…or is it?

5

In 2022, Audius lost ~1 Million USDs

due to a storage collision exploit

We will talk more about

collision issues in Ethereum

6

We will talk more about

collision issues in Ethereum

How do those

collisions occur?

7

Background on function

and storage collisions

We will talk more about

collision issues in Ethereum

How do those

collisions occur?

How to detect those

collision issues?

8

Description of a new tool

with wider applicability

Background on function

and storage collisions

We will talk more about

collision issues in Ethereum

How do those

collisions occur?

How to detect those

collision issues?

Do they affect existing

smart contracts?

9

Background on function

and storage collisions

Description of a new tool

with wider applicability

Insights from analysing

all existing contracts

Background

10

Ethereum is a P2P network of nodes

maintaining the blockchain

11

P2P network

P2P nodes propagate and execute

transactions within the EVM

12

P2P network Ethereum node

EVM

Transactions can be used to

(1) deploy smart contracts

13

P2P network Ethereum node

EVM

User

transactions

1. Write a program

2. Compile it

3. Create an account

Transactions can also be used to

(2) execute deployed smart contracts

14

P2P network Ethereum node

EVM

User

transactions

1. Select a function

2. Encode its signature

3. Generate call data

Smart contracts are immutable

once deployed on the blockchain

15

P2P network

Smart contract

Smart contracts are immutable

once deployed on the blockchain

16

P2P network

Smart contract

ＸNo fixing bugs

ＸNo adding features

Ｘ…

Proxy design pattern enables

upgradeability in smart contracts

17

• Proxy contract contains data storage and

logic contract contains implementation

Original contract

Proxy contract Logic contract

Proxy design pattern enables

upgradeability in smart contracts

18

• Proxy contract contains data storage and

logic contract contains implementation

• Delegate calls link the two contracts:

logic functions run using proxy’s storage

Original contract

Proxy contract Logic contract

delegate call

Proxy design pattern enables

upgradeability in smart contracts

19

• Proxy contract contains data storage and

logic contract contains implementation

• Delegate calls link the two contracts:

logic functions run using proxy’s storage

• Upgrading now requires deploying a new

logic contracts and updating into its address

Original contract

Proxy contract Logic contract

Logic contract v2

An example of proxy smart contract

20

contract Proxy {

 address private logic;

 [...]

 function impl_() {

 [...]

 }

 fallback(bytes calldata input) {

 [...]

 logic.delegatecall(input)

 }

Storing the address of logic contract

An example of proxy smart contract

21

contract Proxy {

 address private logic;

 [...]

 function impl_() {

 [...]

 }

 fallback(bytes calldata input) {

 [...]

 logic.delegatecall(input)

 }

Storing the address of logic contract

If call data’s selector doesn’t match any function

Executing logic functions via delegate calls

What is the catch?

22

Functions may collide

when they have the same signature

23

contract Proxy {

 address private logic;

 [...]

 function impl_LUsXCWD2AKCc() {

 [stealing_fund_from_caller]

 }

 fallback(bytes calldata input) {

 [...]

 logic.delegatecall(input)

 }

}

contract Logic {

 [...]

 function free_eth_withdrawal() {

 [giving_ETH_to_caller]

 }

}

Functions may collide

when they have the same signature

24

contract Proxy {

 address private logic;

 [...]

 function impl_LUsXCWD2AKCc() {

 [stealing_fund_from_caller]

 }

 fallback(bytes calldata input) {

 [...]

 logic.delegatecall(input)

 }

}

contract Logic {

 [...]

 function free_eth_withdrawal() {

 [giving_ETH_to_caller]

 }

}

Having the same first 4 bytes in their hashes

Functions may collide

when they have the same signature

25

contract Proxy {

 address private logic;

 [...]

 function impl_LUsXCWD2AKCc() {

 [stealing_fund_from_caller]

 }

 fallback(bytes calldata input) {

 [...]

 logic.delegatecall(input)

 }

}

contract Logic {

 [...]

 function free_eth_withdrawal() {

 [giving_ETH_to_caller]

 }

}

Having the same first 4 bytes in their hashes

=> proxy contract’s function is always selected!

Function collisions can be exploited

in honeypot contracts

26

contract Proxy {

 address private logic;

 [...]

 function impl_LUsXCWD2AKCc() {

 [stealing_fund_from_caller]

 }

 fallback(bytes calldata input) {

 [...]

 logic.delegatecall(input)

 }

}

contract Logic {

 [...]

 function free_eth_withdrawal() {

 [giving_ETH_to_caller]

 }

}

Having the same first 4 bytes in their hashes

=> proxy contract’s function is always selected!

Storage slots may collide

when they are used differently

27

contract Proxy {

 address private owner;

 [...]

 address private logic;

 [...]

 fallback(bytes calldata input) {

 [...]

 logic.delegatecall(input)

 }

}

contract Logic {

 bool private initialized;

 bool private initializing;

 function initialize() external{

 require (!initialized

 OR initializing)

 initialized = true;

 initializing = false;

 owner = msg.sender;

 }

 [...]

}

Storage slots may collide

when they are used differently

28

contract Proxy {

 address private owner;

 [...]

 address private logic;

 [...]

 fallback(bytes calldata input) {

 [...]

 logic.delegatecall(input)

 }

}

contract Logic {

 bool private initialized;

 bool private initializing;

 function initialize() external{

 require (!initialized

 OR initializing)

 initialized = true;

 initializing = false;

 owner = msg.sender;

 }

 [...]

}

Slot 0

Storage slots may collide

when they are used differently

29

contract Proxy {

 address private owner;

 [...]

 address private logic;

 [...]

 fallback(bytes calldata input) {

 [...]

 logic.delegatecall(input)

 }

}

contract Logic {

 bool private initialized;

 bool private initializing;

 function initialize() external{

 require (!initialized

 OR initializing)

 initialized = true;

 initializing = false;

 owner = msg.sender;

 }

 [...]

}

Slot 0

Write to Slot 0

Storage slots may collide

when they are used differently

30

contract Proxy {

 address private owner;

 [...]

 address private logic;

 [...]

 fallback(bytes calldata input) {

 [...]

 logic.delegatecall(input)

 }

}

contract Logic {

 bool private initialized;

 bool private initializing;

 function initialize() external{

 require (!initialized

 OR initializing)

 initialized = true;

 initializing = false;

 owner = msg.sender;

 }

 [...]

}

Slot 0

Write to Slot 0

Overwrite Slot 0

Storage slots can be exploited

to take over contract ownership

31

contract Proxy {

 address private owner;

 [...]

 address private logic;

 [...]

 fallback(bytes calldata input) {

 [...]

 logic.delegatecall(input)

 }

}

contract Logic {

 bool private initialized;

 bool private initializing;

 function initialize() external{

 require (!initialized

 OR initializing)

 initialized = true;

 initializing = false;

 owner = msg.sender;

 }

 [...]

}

Slot 0

Write to Slot 0

Overwrite Slot 0

Existing tools typically detect collisions

in two phases

32

All smart contracts

Existing tools typically detect collisions

in two phases

33

All smart contracts Pairs of proxy/logic contracts

Identifying proxy &

logic contracts

Existing tools typically detect collisions

in two phases

34

All smart contracts Pairs of proxy/logic contracts Function/Storage collisions

Identifying proxy &

logic contracts

Examining for

collision issues

Existing tools typically detect collisions

in two phases

35

All smart contracts Pairs of proxy/logic contracts Function/Storage collisions

Identifying proxy &

logic contracts

Examining for

collision issues

Requiring contracts’ source code

or historical data of transactions

Challenges: Source code and

historical transactions may be unavailable

36

Challenges: Source code and

historical transactions may be unavailable

37

18% contracts have source code available

Challenges: Source code and

historical transactions may be unavailable

38

18% contracts have source code available

53% contracts have transactions available

Challenges: Source code and

historical transactions may be unavailable

39

18% contracts have source code available

53% contracts have transactions available

“hidden” smart contracts

Can we uncover all proxy contracts?

40

Proxion

41

Proxion uncovers

more proxy contracts than previous works

42

Smart contract coverage

With source code Without source code

With tx Without tx With tx Without tx

EtherScan

Slither

Salehi et al.

USCDetector

USCHunt

CRUSH

Proxion

Proxion also detects

more collision issues as a result

43

Smart contract coverage Collision coverage

With source code Without source code With source code Without source code

With tx Without tx With tx Without tx Function Storage Function Storage

EtherScan

Slither

Salehi et al.

USCDetector

USCHunt

CRUSH

Proxion

Proxion’s novel coverage is

about hidden smart contracts

44

Smart contract coverage Collision coverage

With source code Without source code With source code Without source code

With tx Without tx With tx Without tx Function Storage Function Storage

EtherScan

Slither

Salehi et al.

USCDetector

USCHunt

CRUSH

Proxion

Key idea: the distinct behaviors of

proxy contracts can be triggered in EVM

45

• We trigger fallback function, by using a

4-byte selector matching no function

Proxy smart contract

call data inc.
a 4-byte selector

Key idea: the distinct behaviors of

proxy contracts can be triggered in EVM

46

• We trigger fallback function, by using a

4-byte selector matching no function

• We observe if delegate calls trigger

forwarding the transaction’s call data

Proxy smart contract

call data inc.
a 4-byte selector

call data is
forwarded

Key idea: the distinct behaviors of

proxy contracts can be triggered in EVM

47

• We trigger fallback function, by using a

4-byte selector matching no function

• We observe if delegate calls trigger

forwarding the transaction’s call data

• These behaviors can be done in an

(emulated) EVM

EVM

Proxy smart contract

call data inc.
a 4-byte selector

call data is
forwarded

Key idea: the distinct behaviors of

proxy contracts can be triggered in EVM

48

• We trigger fallback function, by using a

4-byte selector matching no function

• We observe if delegate calls trigger

forwarding the transaction’s call data

• These behaviors can be done in an

(emulated) EVM

=> No source code analysis or

real transactions are needed!

EVM

Proxy smart contract

call data inc.
a 4-byte selector

call data is
forwarded

Given a smart contract,

Proxion first disassembles it into opcodes

49

PUSH1

MSTORE

GASPRICE

…

PUSH1

MSTORE

DELEGATECALL

…

• Proxy contracts must contain a
DELETEGATECALL opcode

continue

Proxion then emulates EVM execution with

generated calldata

50

• To generate the calldata:

▪ Identify all data following PUSH4 opcodes

▪ Avoid all these potential signatures

▪ Generate random function selector

call data:
0x025313a2…

call data:
0x42966c68…

Proxion then emulates EVM execution with

generated calldata

51

• To generate the calldata:

▪ Identify all data following PUSH4 opcodes

▪ Avoid all these potential signatures

▪ Generate random function selector

• Proxy contract must push calldata after

executing DELEGATECALL instruction

call data:
0x025313a2…

call data:
0x42966c68…

0x42966c68

Proxion then finds logic contracts

associated with the proxy contracts

52

• The address of logic contract can also

be found in the EVM stack

• All associated logic contracts in the

past can be discovered in the bytecode

or in the same identified storage slot

▪ See our full paper for a heuristic
Logic contract’s address

Proxion finally tests if a pair of

proxy & logic contracts have collisions

53

• Storage collisions:

• Proxion re-uses solutions from CRUSH1

• (Proxion still covers more contracts)

1Not your Type! Detecting Storage Collision Vulnerabilities in Ethereum Smart Contracts, Ruaro et al., NDSS ‘24.

Proxion finally tests if a pair of

proxy & logic contracts have collisions

54

• Storage collisions:

• Proxion re-uses solutions from CRUSH

• (Proxion still covers more contracts)

• Function collisions:

• Proxion analyses the opcodes to find

potential function signatures

0000 60 PUSH1 0x80

0002 60 PUSH1 0x40

0004 52 MSTORE

0005 34 CALLVALUE

0006 80 DUP1

0007 15 ISZERO

0008 60 PUSH1 0x0e

000A 57 *JUMPI

[...]

0018 35 CALLDATALOAD

0019 60 PUSH1 0xe0

001B 1C SHR

001C 80 DUP1

001D 63 PUSH4 0xdf4a3106

0022 14 EQ

0023 60 PUSH1 0x2a

0025 57 *JUMPI

[...]

002A 5B JUMPDEST

[...]

Proxion finally tests if a pair of

proxy & logic contracts have collisions

55

• Storage collisions:

• Proxion re-uses solutions from CRUSH

• (Proxion still covers more contracts)

• Function collisions:

• Proxion analyses the opcodes to find

potential function signatures

0000 60 PUSH1 0x80

0002 60 PUSH1 0x40

0004 52 MSTORE

0005 34 CALLVALUE

0006 80 DUP1

0007 15 ISZERO

0008 60 PUSH1 0x0e

000A 57 *JUMPI

[...]

0018 35 CALLDATALOAD

0019 60 PUSH1 0xe0

001B 1C SHR

001C 80 DUP1

001D 63 PUSH4 0xdf4a3106

0022 14 EQ

0023 60 PUSH1 0x2a

0025 57 *JUMPI

[...]

002A 5B JUMPDEST

[...]

Pattern:

If matched_selector:

 jump to a function

Proxion finally tests if a pair of

proxy & logic contracts have collisions

56

• Storage collisions:

• Proxion re-uses solutions from CRUSH

• (Proxion still covers more contracts)

• Function collisions:

• Proxion analyses the opcodes to find

potential function signatures

0000 60 PUSH1 0x80

0002 60 PUSH1 0x40

0004 52 MSTORE

0005 34 CALLVALUE

0006 80 DUP1

0007 15 ISZERO

0008 60 PUSH1 0x0e

000A 57 *JUMPI

[...]

0018 35 CALLDATALOAD

0019 60 PUSH1 0xe0

001B 1C SHR

001C 80 DUP1

001D 63 PUSH4 0xdf4a3106

0022 14 EQ

0023 60 PUSH1 0x2a

0025 57 *JUMPI

[...]

002A 5B JUMPDEST

[...]

Pattern:

If matched_selector:

 jump to a function

Function signature

Proxion finally tests if a pair of

proxy & logic contracts have collisions

57

• Storage collisions:

• Proxion re-uses solutions from CRUSH

• (Proxion still covers more contracts)

• Function collisions:

• Proxion analyses the opcodes to find

potential function signatures

• Collision occurs when a function

signature appears in both contracts

0000 60 PUSH1 0x80

0002 60 PUSH1 0x40

0004 52 MSTORE

0005 34 CALLVALUE

0006 80 DUP1

0007 15 ISZERO

0008 60 PUSH1 0x0e

000A 57 *JUMPI

[...]

0018 35 CALLDATALOAD

0019 60 PUSH1 0xe0

001B 1C SHR

001C 80 DUP1

001D 63 PUSH4 0xdf4a3106

0022 14 EQ

0023 60 PUSH1 0x2a

0025 57 *JUMPI

[...]

002A 5B JUMPDEST

[...]

Pattern:

If matched_selector:

 jump to a function

Function signature

Results

58

We use different datasets

collected independently

59

• Dataset [D1] (2015 – Oct 2023)

▪ 36.1M active contracts
[D1]

We use different datasets

collected independently

60

• Dataset [D1] (2015 – Oct 2023)

▪ 36.1M active contracts

• Dataset [D2] (2017 – 2022)

▪ 330K contracts with source code available

▪ Used by USCHunt1

[D1]

[D2]

1Proxy Hunting: Understanding and Characterizing Proxy-based Upgradeable Smart Contracts in Blockchains, Bodell et al., Usenix Sec ‘23.

We use different datasets

collected independently

61

• Dataset [D1] (2015 – Oct 2023)

▪ 36.1M active contracts

• Dataset [D2] (2017 – 2022)

▪ 330K contracts with source code available

▪ Used by USCHunt

• Dataset [D3] (2015 – April 2023)

▪ All 53.5M contracts

▪ Used by CRUSH

[D1]

[D2]

[D3]

[D3]

Proxion is effective

in identifying proxy smart contracts

62

• Dataset [D1]

▪ 54.2% contracts are proxy

▪ 1.5M proxy contracts are hidden
[D1]

[D2]

[D3]

Proxion is effective

in identifying proxy smart contracts

63

• Dataset [D1]

▪ 54.2% contracts are proxy

▪ 1.5M proxy contracts are hidden

• Dataset [D2]

▪ +7,000 contracts compared to USCHunt

[D1]

[D2]

[D3]

Proxion is effective

in identifying proxy smart contracts

64

• Dataset [D1]

▪ 54.2% contracts are proxy

▪ 1.5M proxy contracts are hidden

• Dataset [D2]

▪ +7,000 contracts compared to USCHunt

• Dataset [D3]

▪ +1.6M contracts compared to CRUSH

[D1]

[D2]

Proxion is accurate

in detecting collision issues

65

TP FP TN FN Accuracy

Storage
collision

USCHunt 33 83 79 11 54.4%

CRUSH 26 76 86 18 54.4%

Proxion 27 28 134 17 78.2%

Proxion is accurate

in detecting collision issues

66

TP FP TN FN Accuracy

Storage
collision

USCHunt 33 83 79 11 54.4%

CRUSH 26 76 86 18 54.4%

Proxion 27 28 134 17 78.2%

Higher accuracy

than prior works

Proxion is accurate

in detecting collision issues

67

TP FP TN FN Accuracy

Storage
collision

USCHunt 33 83 79 11 54.4%

CRUSH 26 76 86 18 54.4%

Proxion 27 28 134 17 78.2%

Same collision detector but

different proxy identifications

Proxion is accurate

in detecting collision issues

68

TP FP TN FN Accuracy

Storage
collision

USCHunt 33 83 79 11 54.4%

CRUSH 26 76 86 18 54.4%

Proxion 27 28 134 17 78.2%

Function
collision

USCHunt 299 1 0 261 53.3%

Proxion 557 0 1 3 99.5%

Proxion is accurate

in detecting collision issues

69

TP FP TN FN Accuracy

Storage
collision

USCHunt 33 83 79 11 54.4%

CRUSH 26 76 86 18 54.4%

Proxion 27 28 134 17 78.2%

Function
collision

USCHunt 299 1 0 261 53.3%

Proxion 557 0 1 3 99.5%

Higher accuracyNo false positive

Proxion reveals insights about

proxy smart contracts’ landscape

70

• Over half of the active contracts are

proxy or logic contracts

• The majority of proxy contracts do not

publish their source code

Proxion reveals insights about

proxy smart contracts’ landscape

71

• Over half of the active contracts are

proxy or logic contracts

• The majority of proxy contracts do not

publish their source code

• The growth shows demand, testing, and

mainstream periods of proxy contracts

Proxion reveals insights about

proxy smart contracts’ landscape

72

• 98.7% of function collisions are

duplicated from the
OwnableDelegateProxy contract

Year Function
collision

2017 24

2018 5,341

2019 16,136

2020 28,448

2021 705,801

2022 808,493

2023 2,541

Total 1,566,784

Proxion reveals insights about

proxy smart contracts’ landscape

73

• 98.7% of function collisions are

duplicated from the
OwnableDelegateProxy contract

• 3,000 storage collisions are exploitable,

affecting several staking entities like

Compound, Curve, Poly,…

Year Function
collision

Storage
collision

2017 24 0

2018 5,341 7

2019 16,136 37

2020 28,448 34

2021 705,801 725

2022 808,493 2082

2023 2,541 137

Total 1,566,784 3,022

Takeaways

How do function and

storage collisions occur?

74

Due to the emerging

proxy contract setups.

Takeaways

How do function and

storage collisions occur?

How to detect those

collision issues?

75

Due to the emerging

proxy contract setups.

Use Proxion to uncover

all proxy smart contracts!

Takeaways

How do function and

storage collisions occur?

How to detect those

collision issues?

Do they affect existing

smart contracts?

76

Due to the emerging

proxy contract setups.

Use Proxion to uncover

all proxy smart contracts!

Yes! Millions are already

vulnerable (and counting).

Last but not least:

We are hiring PhDs & Postdoc!

77

… or mail to muoi@chalmers.se

	Slide 1: Uncovering Hidden Proxy Smart Contracts for Finding Collision Vulnerabilities in Ethereum
	Slide 2: Two swords cannot be in the same sheath
	Slide 3: Two smart contracts cannot “be” in the same storage/function
	Slide 4: Two smart contracts cannot “be” in the same storage/function
	Slide 5
	Slide 6: We will talk more about collision issues in Ethereum
	Slide 7: We will talk more about collision issues in Ethereum
	Slide 8: We will talk more about collision issues in Ethereum
	Slide 9: We will talk more about collision issues in Ethereum
	Slide 10: Background
	Slide 11: Ethereum is a P2P network of nodes maintaining the blockchain
	Slide 12: P2P nodes propagate and execute transactions within the EVM
	Slide 13: Transactions can be used to (1) deploy smart contracts
	Slide 14: Transactions can also be used to (2) execute deployed smart contracts
	Slide 15: Smart contracts are immutable once deployed on the blockchain
	Slide 16: Smart contracts are immutable once deployed on the blockchain
	Slide 17: Proxy design pattern enables upgradeability in smart contracts
	Slide 18: Proxy design pattern enables upgradeability in smart contracts
	Slide 19: Proxy design pattern enables upgradeability in smart contracts
	Slide 20: An example of proxy smart contract
	Slide 21: An example of proxy smart contract
	Slide 22: What is the catch?
	Slide 23: Functions may collide when they have the same signature
	Slide 24: Functions may collide when they have the same signature
	Slide 25: Functions may collide when they have the same signature
	Slide 26: Function collisions can be exploited in honeypot contracts
	Slide 27: Storage slots may collide when they are used differently
	Slide 28: Storage slots may collide when they are used differently
	Slide 29: Storage slots may collide when they are used differently
	Slide 30: Storage slots may collide when they are used differently
	Slide 31: Storage slots can be exploited to take over contract ownership
	Slide 32: Existing tools typically detect collisions in two phases
	Slide 33: Existing tools typically detect collisions in two phases
	Slide 34: Existing tools typically detect collisions in two phases
	Slide 35: Existing tools typically detect collisions in two phases
	Slide 36: Challenges: Source code and historical transactions may be unavailable
	Slide 37: Challenges: Source code and historical transactions may be unavailable
	Slide 38: Challenges: Source code and historical transactions may be unavailable
	Slide 39: Challenges: Source code and historical transactions may be unavailable
	Slide 40: Can we uncover all proxy contracts?
	Slide 41: Proxion
	Slide 42: Proxion uncovers more proxy contracts than previous works
	Slide 43: Proxion also detects more collision issues as a result
	Slide 44: Proxion’s novel coverage is about hidden smart contracts
	Slide 45: Key idea: the distinct behaviors of proxy contracts can be triggered in EVM
	Slide 46: Key idea: the distinct behaviors of proxy contracts can be triggered in EVM
	Slide 47: Key idea: the distinct behaviors of proxy contracts can be triggered in EVM
	Slide 48: Key idea: the distinct behaviors of proxy contracts can be triggered in EVM
	Slide 49: Given a smart contract, Proxion first disassembles it into opcodes
	Slide 50: Proxion then emulates EVM execution with generated calldata
	Slide 51: Proxion then emulates EVM execution with generated calldata
	Slide 52: Proxion then finds logic contracts associated with the proxy contracts
	Slide 53: Proxion finally tests if a pair of proxy & logic contracts have collisions
	Slide 54: Proxion finally tests if a pair of proxy & logic contracts have collisions
	Slide 55: Proxion finally tests if a pair of proxy & logic contracts have collisions
	Slide 56: Proxion finally tests if a pair of proxy & logic contracts have collisions
	Slide 57: Proxion finally tests if a pair of proxy & logic contracts have collisions
	Slide 58: Results
	Slide 59: We use different datasets collected independently
	Slide 60: We use different datasets collected independently
	Slide 61: We use different datasets collected independently
	Slide 62: Proxion is effective in identifying proxy smart contracts
	Slide 63: Proxion is effective in identifying proxy smart contracts
	Slide 64: Proxion is effective in identifying proxy smart contracts
	Slide 65: Proxion is accurate in detecting collision issues
	Slide 66: Proxion is accurate in detecting collision issues
	Slide 67: Proxion is accurate in detecting collision issues
	Slide 68: Proxion is accurate in detecting collision issues
	Slide 69: Proxion is accurate in detecting collision issues
	Slide 70: Proxion reveals insights about proxy smart contracts’ landscape
	Slide 71: Proxion reveals insights about proxy smart contracts’ landscape
	Slide 72: Proxion reveals insights about proxy smart contracts’ landscape
	Slide 73: Proxion reveals insights about proxy smart contracts’ landscape
	Slide 74: Takeaways
	Slide 75: Takeaways
	Slide 76: Takeaways
	Slide 77: Last but not least: We are hiring PhDs & Postdoc!
	Slide 78: Logotype

