ETH:iirich

CHALMERS

Uncovering Hidden Proxy Smart Contracts for
Finding Collision Vulnerabilities in Ethereum

Cheng-Kang Chen, Wen-Yi Chu, Muoi Tran, Laurent Vanbever, Hsu-Chun Hsiao

IEEE ICDCS 2025
Glasgow, Scotland, UK
21 July 2025

JAPANESE
PROVERBS

Two swords cannot AND
be in the same sheath

SAYINGS

Daniel Crump ‘Buchanan

Two smart contracts cannot
“be” in the same storage/function

Two smart contracts cannot
“be” in the same storage/function

...oris it?

In 2022, Audius lost ~1 Million USDs
due to a storage collision exploit

A AUDIUS Blog Categories ~ More v Open Audius

Audius Governance Takeover Post-Mortem
7/23/22

Announcements | 7/24/2022 15 min

On July 23, 2022, the Audius governance, staking, and delegation contracts on Ethereum mainnet were compromised due
to a bug in the contract initialization code that allowed repeated invocations of the initialize functions. The bug allowed an
attacker to maliciously transfer 18MM $AUDIO tokens held by the Audius governance contract (referred to as the
“"community treasury”) to a wallet of their control and modify dynamics of the voting system to illicitly change their staked
$AUDIO amounts in the network. The set of contracts were audited by the OpenZeppelin team [report] August 25, 2020
prior to deployment and some additional changes separate from the affected vulnerable code were audited by Kudelski on
October 27, 2021 [report], but unfortunately this vulnerability was not caught in either case.

Vulnerability

The Audius governance contracts utilize the OpenZeppelin proxy upgradability pattern with an override to the standard
implementation within the AudiusAdminUpgradabilityProxy contract. This permits proxy upgrades to the logic contracts of
the Audius system (e.g. Staking, Delegation).

In its implementation, the AudiusAdminUpgradabilityProxy uses storage slot 0 for the address of the proxyAdmin: [code].
The proxyAdmin for the Audius protocol was set to the governance system address of
'0x4deca517d6817b6510798b7328f2314d3003abac’ which implements various checks and balances to prevent
unauthorized use (voting procedures, time delays, a community-run override process, etc.).

We will talk more about
collision issues in Ethereum

We will talk more about
collision issues in Ethereum

How do those
collisions occur?

Background on function
and storage collisions

We will talk more about
collision issues in Ethereum

How do those How to detect those
collisions occur? collision issues?
Background on function Description of a new tool

and storage collisions with wider applicability

We will talk more about
collision issues in Ethereum

How do those How to detect those
collisions occur? collision issues?
Background on function Description of a new tool

and storage collisions with wider applicability

Do they affect existing
smart contracts?

Insights from analysing
all existing contracts

Background

Ethereum is a P2P network of nodes
maintaining the blockchain

VM/\‘
N

P2P network

P2P nodes propagate and execute
transactions within the EVM

P2P network Ethereum node

13

Transactions can be used to
(1) deploy smart contracts

transactions

P2P network Ethereum node

1. Write a program
2. Compile it

3. Create an account

&

User

14

Transactions can also be used to
(2) execute deployed smart contracts

1. Select a function

z z 2. Encode its signature
EVM EEE
T " 3. Generate call data

e N r'e transactions (Q)
W0 @)

P2P network Ethereum node User

15

Smart contracts are immutable
once deployed on the blockchain

L
_|,.1/ D Smart contract

P2P network

16

Smart contracts are immutable
once deployed on the blockchain

7
,,/ D Smart contract

&Y V/\‘ X No fixing bugs

\‘/ J X No adding features

v_/v X...

P2P network

17

Proxy design pattern enables
upgradeability in smart contracts

Original contract

D * Proxy contract contains data storage and

logic contract contains implementation

Proxy contract Logic contract

18

Proxy design pattern enables
upgradeability in smart contracts

Original contract

D * Proxy contract contains data storage and

| logic contract contains implementation
[\

delegate call - » Delegate calls link the two contracts:
i logic functions run using proxy’s storage

Proxy contract Logic contract

19

Proxy design pattern enables
upgradeability in smart contracts

Original contract

h

Logic contract v2

* Proxy contract contains data storage and
logic contract contains implementation

» Delegate calls link the two contracts:
logic functions run using proxy’s storage

» Upgrading now requires deploying a new
logic contracts and updating into its address

20

An example of proxy smart contract

contract Proxy {
address private logic;

[...]

Storing the address of logic contract

function impl () {
[...]
}

fallback (bytes calldata input) {

[...]
logic.delegatecall (input)

21

An example of proxy smart contract

contract Proxy {
address private logic;

[...]

Storing the address of logic contract

function impl () {
[...]
}

fallback (bytes calldata input)—¢ If call data’s selector doesn’t match any function

[...]

logic.delegatecall (input) Executing logic functions via delegate calls

What is the catch?

23

Functions may collide
when they have the same signature

contract Proxy { contract Logic {

address private logic; [...]

[...]
function free eth withdrawal ()

function impl LUsXCWD2AKCc () [giving ETH to caller]

[stealing fund from caller] }

} }

fallback (bytes calldata input) {

[...]
logic.delegatecall (input)

{

24

Functions may collide
when they have the same signature

contract Proxy { contract Logic {

address private logic; [...]

[...]

function free eth withdrawal () {

function impl LUsXCWD2AKCc () { [giving ETH to caller]

[stealing fund from caller]

}
}

fallback (bytes calldata input) {

[...]

logic.delegatecall (input)
Having the same first 4 bytes in their hashes

25

Functions may collide
when they have the same signature

contract Proxy { contract Logic {

address private logic; [...]

[...]

function free eth withdrawal () {

function impl LUsXCWD2AKCc () { [giving ETH to caller]

[stealing fund from caller]

}
}

fallback (bytes calldata input) {

[...]

logic.delegatecall (input)
Having the same first 4 bytes in their hashes

} o
=> proxy contract’s function is always selected!

26

Function collisions can be exploited
in honeypot contracts

contract Proxy { contract Logic {

address private logic; [...]

[...]

function free eth withdrawal () {

function impl LUsXCWD2AKCc () [giving ETH to caller]

[stealing fund from caller] }

} }

fallback (bytes calldata input) {

[...]

logic.delegatecall (input)
Having the same first 4 bytes in their hashes

} .
=> proxy contract’s function is always selected!

Storage slots may collide
when they are used differently

contract Proxy { contract Logic {
address private owner; bool private initialized;
[...] bool private initializing;
address private logic;
function initialize () external{
[...] require (!initialized
OR initializing)

fallback (bytes calldata input) { initialized = true;

[...] initializing = false;

logic.delegatecall (input) owner = msg.sender;

Storage slots may collide
when they are used differently

contract Proxy { contract Logic {
address private owner; Slot 0 bool private initialized;
[oocal bool private initializing;
address private logic;
function initialize () external{
[...] require (!initialized
OR initializing)

fallback (bytes calldata input) { initialized = true;

[...] initializing = false;

logic.delegatecall (input) owner = msg.sender;

29

Storage slots may collide
when they are used differently

contract Proxy {
address private owner;

[...]

address private logic;
[
fallback (bytes calldata input)

[...]
logic.delegatecall (input)

{

Slot 0

contract Logic {
bool private initialized;
bool private initializing;

function initialize () external{
require (!initialized
OR initializing)
initialized = true; Write to Slot 0
initializing = false;
owner = msg.sender;

30

Storage slots may collide
when they are used differently

contract Proxy {
address private owner;

[...]

address private logic;
[
fallback (bytes calldata input)

[...]
logic.delegatecall (input)

{

Slot 0

contract Logic {
bool private initialized;
bool private initializing;

function initialize () external{
require (!initialized
OR initializing)
initialized = true; Write to Slot 0
initializing = false;
owner = msg.sender;

}
[...]

Overwrite Slot 0

31

Storage slots can be exploited
to take over contract ownership

contract Proxy {
address private owner;

[...]

address private logic;
[...]
fallback (bytes calldata input)

[...]
logic.delegatecall (input)

{

Slot 0

contract Logic {
bool private initialized;
bool private initializing;

function initialize () exterpal/{
require (!initialized
OR initializing)
initialized = true; Write to Slot 0
initializing = false;
owner = msg.sender; Overwrite Slot 0

[...]

Existing tools typically detect collisions
in two phases

h
O0On D
nOOD
N 0

All smart contracts

33

Existing tools typically detect collisions
in two phases

D D% D Idlent!fying proxy & D\:
ogic contracts
OO D ‘
N D R

All smart contracts Pairs of proxy/logic contracts

J[J 7L

LS

Existing tools typically detect collisions
in two phases

Examining for
collision issues

—

D D% D Idlent!fying proxy & D\:
ogic contracts
OO D ‘
N D R

All smart contracts Pairs of proxy/logic contracts Function/Storage collisions

J[J 7L
I T
I I

LS
Lo
Ly

35

Existing tools typically detect collisions
in two phases

Requiring contracts’ source code
or historical data of transactions

Examining for

D D% D Idlent!fying proxy & D\: .
ogic contracts collision issues
OO D ‘ ‘
n O N N D

All smart contracts Pairs of proxy/logic contracts Function/Storage collisions

[J[J 7L
LJ vy LS
I I

36

Challenges: Source code and
historical transactions may be unavailable

. Cnly source code
| ™ Source code + transaction
3 4 W Omnly transaction
I Mo osource code, o fransaction

MNumber of alive sman comtracts (million}

005 20016 20017 2001E 2001% 020 2021 2022 2023

37

Challenges: Source code and
historical transactions may be unavailable

. Cnly source code
| ™ Source code + transaction
3 4 W Omnly transaction
I Mo osource code, o fransaction

MNumber of alive sman comtracts (million}

]' 18% contracts have source code available
005 2016 2017 201R I01% 0 :0X0 2021 2022 1023

38

Challenges: Source code and
historical transactions may be unavailable

E=

Omly souree code
Rpurce code + transaction

= &
111l

Oy tramsaction
Mo source code, o fransaction

=
S
1

,_
th

- 53% contracts have transactions available

=
1

MNumber of alive sman comtracts (million}
w =
']

18% contracts have source code available

—
L

005 20016 20017 2001E 2001% 020 2021 2022 2023

39

Challenges: Source code and
historical transactions may be unavailable

Omly souree code
Rpurce code + transaction

154

Oy tramsaction

&
il

“hidden” smart contracts

Mo source code, o fransaction
15

I

15

53% contracts have transactions available
10 4

MNumber of alive sman comtracts (million}

18% contracts have source code available
Xils 2016 20017 201E Lk X0za 2021 2022 2023

40

Can we uncover all proxy contracts?

41

Proxion

42

Proxion uncovers
more proxy contracts than previous works

Smart contract coverage

With source code Without source code

With tx Without tx With tx Without tx

EtherScan

Slither

Salehi et al.
USCDetector

USCHunt

CRUSH

Proxion

43

Proxion also detects
more collision issues as a result

Smart contract coverage Collision coverage

Without source code

EtherScan
Slither

Salehi et al.
USCDetector
USCHunt
CRUSH

Proxion

With source code

With tx

NENNNBRRN

Without tx

With tx

NN BN

Without tx

With source code

Function

Storage

Without source code

Function

Storage

SIS

Proxion’s novel coverage is
about hidden smart contracts

Smart contract coverage Collision coverage

With source code Without source code With source code Without source code

With tx Without tx With tx Withouttx Function Storage Function Storage

EtherScan

Slither

Salehi et al.

USCDetector

USCHunt

CRUSH
Proxion

45

Key idea: the distinct behaviors of
proxy contracts can be triggered in EVM

» We trigger fallback function, by using a
4-byte selector matching no function

call data inc.

a 4-byte selector D

Proxy smart contract

46

Key idea: the distinct behaviors of
proxy contracts can be triggered in EVM

» We trigger fallback function, by using a
4-byte selector matching no function

call data inc. call data is « We observe if delegate calls trigger
a 4-byte selector D forwarded forwarding the transaction’s call data

[
»

»

Proxy smart contract

47

Key idea: the distinct behaviors of
proxy contracts can be triggered in EVM

» We trigger fallback function, by using a
4-byte selector matching no function

EVM

call data inc. call data is « We observe if delegate calls trigger
a 4-byte selector D forwarded forwarding the transaction’s call data

»
Lot »

* These behaviors can be done in an

Proxy smart contract
(emulated) EVM

48

Key idea: the distinct behaviors of
proxy contracts can be triggered in EVM

EVM

call data inc.

» We trigger fallback function, by using a
4-byte selector matching no function

call data is » We observe if delegate calls trigger
forwarded forwarding the transaction’s call data

a 4-byte selector D

Proxy smart contract

»

* These behaviors can be done in an
(emulated) EVM

=> No source code analysis or
real transactions are needed!

Given a smart contract,
Proxion first disassembles it into opcodes

49

PUSHI1

MSTORE
> e
GASPRICE x

PUSHI1

MSTORE

DELEGATECALL continue

* Proxy contracts must contain a
DELETEGATECALL opcode

50

Proxion then emulates EVM execution with
generated calldata

call data:
0x025313a2.. » To generate the calldata:

\ » |dentify all data following PUSH4 opcodes
é — = Avoid all these potential signatures
> — » Generate random function selector
—l

call data:
0x42966¢c68...

N

N —
= — (=
1

Proxion then emulates EVM execution with
generated calldata

call data:
0x025313a2.. » To generate the calldata:

\ » |dentify all data following PUSH4 opcodes
é — x = Avoid all these potential signatures
> 1 —_—
» Generate random function selector
—l

call data: * Proxy contract must push calldata after
0x42966c68... executing DELEGATECALL instruction

N

5

0x42966c68

v

51

52

Proxion then finds logic contracts
associated with the proxy contracts

; E\

Logic contract's address

» The address of logic contract can also
be found in the EVM stack

« All associated logic contracts in the
past can be discovered in the bytecode
or in the same identified storage slot

= See our full paper for a heuristic

53

Proxion finally tests if a pair of
proxy & logic contracts have collisions

 Storage collisions:
* Proxion re-uses solutions from CRUSH'
* (Proxion still covers more contracts)

"Not your Type! Detecting Storage Collision Vulnerabilities in Ethereum Smart Contracts, Ruaro et al., NDSS ‘24.

54

Proxion finally tests if a pair of
proxy & logic contracts have collisions

0000
0002
0004
0005
0006
0007
0008
000A
[...
0018
0019
001B
001C
001D
0022
0023
0025
[oool
002A
[...]

]

60
60
52
34
80
15
60
57

35
60
1C
80
63
14
60
57

5B

PUSH1 0x80
PUSH1 0x40
MSTORE
CALLVALUE
DUP1
ISZERO
PUSH1 0x0e
*JUMPI

CALLDATALOAD
PUSH1 0xe0

SHR

DUP1

PUSH4 0xdf4a3106
EQ

PUSH1 0x2a
*JUMPI

JUMPDEST

 Storage collisions:
* Proxion re-uses solutions from CRUSH

» (Proxion still covers more contracts)

* Function collisions:

* Proxion analyses the opcodes to find
potential function signatures

55

Proxion finally tests if a pair of
proxy & logic contracts have collisions

0000 60 PUSH1 0x80
0002 60 ©PUSH1 0x40
0004 52 MSTORE
0005 34 CALLVALUE
0006 80 DUP1
0007 15 1ISZERO
0008 60 PUSH1 0x0e
000A 57 *JUMPI
[...]
0018 35 CALLDATALOAD
0019 60 PUSH1 0xeO
001B 1C SHR
001C 80 DUP1
001D 63 PUSH4 0xdf4a3106
0022 14 EQ
0023 60 PUSHI 0x2a
0025 57 *JUMPI
[]

<:"OOZA 5B JUMPDEST

[.

]

 Storage collisions:
* Proxion re-uses solutions from CRUSH

» (Proxion still covers more contracts)

* Function collisions:

* Proxion analyses the opcodes to find
Pattern: potential function signatures

If matched selector:

Jump to a function

56

Proxion finally tests if a pair of
proxy & logic contracts have collisions

0000
0002
0004
0005
0006
0007
0008
000A
[...
0018
0019
001B
001C
001D
0022
0023
0025

]

]

60
60
52
34
80
15
60
57

35
60
1C
80
63
14
60
57

PUSH1 0x80
PUSH1 0x40 . . _
MSTORE Storage collisions:

CALLVALUE * Proxion re-uses solutions from CRUSH
DUP1

ISZERO * (Proxion still covers more contracts)
PUSH1 0x0e

*JUMPT

Function signature

CALLDATALOAD

PUSH1 0xe0 /_/
SHR

DUP1 Pattern:

PUSH4 0xdf4a3106

* Function collisions:

* Proxion analyses the opcodes to find
potential function signatures

[
<:*OOZA
[...

]

5B

EQ If matched selector:
SUSIERE ORZE jump to a function
*JUMPI

JUMPDEST

Proxion finally tests if a pair of
proxy & logic contracts have collisions

0000 60 PUSH1 0x80
0002 60 ©PUSH1 0x40

0004 52 MSTORE Storage collisions:

0005 34 CALLVALUE * Proxion re-uses solutions from CRUSH
0006 80 DUP1 _ _
0007 15 ISZERO * (Proxion still covers more contracts)

0008 60 PUSH1 0x0e
000A 57 *JUMPI

e Function signature . Fynction collisions:

0018 35 CALLDATALOAD

UOLE G0 EUSEL 0l « Proxion analyses the opcodes to find
001B 1C SHR . . .

001C 80 DUPL Pattern: potential function signatures

001D 63 PUSH4 Oxdfda3106 « Collision occurs when a function

0022 14 EOQO If matched selector:
a ignature appears in both contracts
0023 60 PUSH1 0x2a signa

0025 57 *JUMPI
]

|— el
S~.002a 5B JUMPDEST
[...]

Jump to a function

58

Results

59

We use different datasets
collected independently

[D1]

* Dataset [D1] (2015 — Oct 2023)

= 36.1M active contracts

60

We use different datasets
collected independently

[D2] - Dataset [D1] (2015 — Oct 2023)

= 36.1M active contracts

[D1]
- Dataset [D2] (2017 — 2022)

= 330K contracts with source code available
= Used by USCHunt!

"Proxy Hunting: Understanding and Characterizing Proxy-based Upgradeable Smart Contracts in Blockchains, Bodell et al., Usenix Sec ‘23.

We use different datasets
collected independently

[D2] - Dataset [D1] (2015 — Oct 2023)

= 36.1M active contracts

[D1]
- Dataset [D2] (2017 — 2022)

= 330K contracts with source code available
= Used by USCHunt

» Dataset [D3] (2015 — April 2023)
= All 53.5M contracts

» Used by CRUSH

62

Proxion is effective
in identifying proxy smart contracts

[D2] - Dataset [D1]

= 54.2% contracts are proxy

[D1]

= 1.5M proxy contracts are hidden

Proxion is effective
in identifying proxy smart contracts

[D2] - Dataset [D1]

= 54.2% contracts are proxy

[D1]

= 1.5M proxy contracts are hidden

» Dataset [D2]
= +7,000 contracts compared to USCHunt

[D3]

63

64

Proxion is effective

in identifying proxy smart contracts

[D1]

[D2]

» Dataset [D1]

= 54.2% contracts are proxy

= 1.5M proxy contracts are hidden

» Dataset [D2]

= +7,000 contracts compared to USCHunt

» Dataset [D3]

= +1.6M contracts compared to CRUSH

65

Proxion is accurate
in detecting collision issues

Storage USCHunt 54.4%

collision
CRUSH 26 76 86 18 54.4%

Proxion 27 28 134 17 78.2%

66

Proxion is accurate
in detecting collision issues

Storage USCHunt 54.4%
collision
CRUSH 26 76 86 18 54.4%
Proxion 27 28 134 17 78.2%

Higher accuracy
than prior works

67

Proxion is accurate
in detecting collision issues

Storage USCHunt 54.4%
collision
CRUSH 26 76 86 18 54.4%
Proxion 27 28 134 17 78.2%

Same collision detector but
different proxy identifications

Proxion is accurate
in detecting collision issues

Storage USCHunt 54.4%
collision
CRUSH 26 76 86 18 54.4%
Proxion 27 28 134 17 78.2%
Function USCHunt 299 1 0 261 53.3%
collision

Proxion 557 0 1 3 99.5%

69

Proxion is accurate
in detecting collision issues

Storage
collision

Function
collision

USCHunt
CRUSH
Proxion

USCHunt

Proxion

26
27
299

957

76
28
1
0

No false positive

86
134

18
17
261

54.4%
54.4%
78.2%
53.3%
99.5%

Higher accuracy

70

Proxion reveals insights about
proxy smart contracts’ landscape

D

Number of contract pairs (million)

Proxy and logic contracts have source code
Only logic contract has source code

Only proxy contract has source code

Both contracts do not have source code

2015

2016 2017 2018 2019 2020 2021

2022

2023

* Over half of the active contracts are
proxy or logic contracts

» The maijority of proxy contracts do not
publish their source code

71

Proxion reveals insights about
proxy smart contracts’ landscape

Number of contract pairs (million)

Proxy and logic contracts have source code
Only logic contract has source code

Only proxy contract has source code

Both contracts do not have source code

ERC-1167 ERC-2535

ERC-1822
ERC-1967

2015

2016 2017 2018 2019 2020 2021 2022 2023

* Over half of the active contracts are
proxy or logic contracts

» The maijority of proxy contracts do not
publish their source code

* The growth shows demand, testing, and
mainstream periods of proxy contracts

72

Proxion reveals insights about
proxy smart contracts’ landscape

Year | Function
collision » 98.7% of function collisions are

2017 24 duplicated from the

OwnableDelegateProxy contract
2018 5,341

2019 16,136
2020 28,448
2021 705,801
2022 808,493
2023 2,541
Total 1,566,784

73

Proxion reveals insights about
proxy smart contracts’ landscape

Year | Function Storage
collision collision

2017
2018
2019
2020
2021
2022
2023
Total

24

5,341
16,136
28,448
705,801
808,493
2,541
1,566,784

0

7

37

34
725
2082
137
3,022

* 98.7% of function collisions are
duplicated from the
OwnableDelegateProxy contract

» 3,000 storage collisions are exploitable,
affecting several staking entities like
Compound, Curve, Poly,...

74

Takeaways

How do function and
storage collisions occur?

Due to the emerging
proxy contract setups.

75

Takeaways

How do function and
storage collisions occur?

Due to the emerging
proxy contract setups.

How to detect those
collision issues?

Use Proxion to uncover
all proxy smart contracts!

76

Takeaways

How do function and
storage collisions occur?

Due to the emerging
proxy contract setups.

How to detect those
collision issues?

Use Proxion to uncover
all proxy smart contracts!

Do they affect existing
smart contracts?

Yes! Millions are already
vulnerable (and counting).

Last but not least:
We are hiring PhDs & Postdoc!

(%} CHALMERS | (8§} UNIVERSITY OF GOTHENBURG

OOOOOOOOOOOOOOOOOOOOOO

& SECURALAB....

... or mail to muoi@chalmers.se

77

	Slide 1: Uncovering Hidden Proxy Smart Contracts for Finding Collision Vulnerabilities in Ethereum
	Slide 2: Two swords cannot be in the same sheath
	Slide 3: Two smart contracts cannot “be” in the same storage/function
	Slide 4: Two smart contracts cannot “be” in the same storage/function
	Slide 5
	Slide 6: We will talk more about collision issues in Ethereum
	Slide 7: We will talk more about collision issues in Ethereum
	Slide 8: We will talk more about collision issues in Ethereum
	Slide 9: We will talk more about collision issues in Ethereum
	Slide 10: Background
	Slide 11: Ethereum is a P2P network of nodes maintaining the blockchain
	Slide 12: P2P nodes propagate and execute transactions within the EVM
	Slide 13: Transactions can be used to (1) deploy smart contracts
	Slide 14: Transactions can also be used to (2) execute deployed smart contracts
	Slide 15: Smart contracts are immutable once deployed on the blockchain
	Slide 16: Smart contracts are immutable once deployed on the blockchain
	Slide 17: Proxy design pattern enables upgradeability in smart contracts
	Slide 18: Proxy design pattern enables upgradeability in smart contracts
	Slide 19: Proxy design pattern enables upgradeability in smart contracts
	Slide 20: An example of proxy smart contract
	Slide 21: An example of proxy smart contract
	Slide 22: What is the catch?
	Slide 23: Functions may collide when they have the same signature
	Slide 24: Functions may collide when they have the same signature
	Slide 25: Functions may collide when they have the same signature
	Slide 26: Function collisions can be exploited in honeypot contracts
	Slide 27: Storage slots may collide when they are used differently
	Slide 28: Storage slots may collide when they are used differently
	Slide 29: Storage slots may collide when they are used differently
	Slide 30: Storage slots may collide when they are used differently
	Slide 31: Storage slots can be exploited to take over contract ownership
	Slide 32: Existing tools typically detect collisions in two phases
	Slide 33: Existing tools typically detect collisions in two phases
	Slide 34: Existing tools typically detect collisions in two phases
	Slide 35: Existing tools typically detect collisions in two phases
	Slide 36: Challenges: Source code and historical transactions may be unavailable
	Slide 37: Challenges: Source code and historical transactions may be unavailable
	Slide 38: Challenges: Source code and historical transactions may be unavailable
	Slide 39: Challenges: Source code and historical transactions may be unavailable
	Slide 40: Can we uncover all proxy contracts?
	Slide 41: Proxion
	Slide 42: Proxion uncovers more proxy contracts than previous works
	Slide 43: Proxion also detects more collision issues as a result
	Slide 44: Proxion’s novel coverage is about hidden smart contracts
	Slide 45: Key idea: the distinct behaviors of proxy contracts can be triggered in EVM
	Slide 46: Key idea: the distinct behaviors of proxy contracts can be triggered in EVM
	Slide 47: Key idea: the distinct behaviors of proxy contracts can be triggered in EVM
	Slide 48: Key idea: the distinct behaviors of proxy contracts can be triggered in EVM
	Slide 49: Given a smart contract, Proxion first disassembles it into opcodes
	Slide 50: Proxion then emulates EVM execution with generated calldata
	Slide 51: Proxion then emulates EVM execution with generated calldata
	Slide 52: Proxion then finds logic contracts associated with the proxy contracts
	Slide 53: Proxion finally tests if a pair of proxy & logic contracts have collisions
	Slide 54: Proxion finally tests if a pair of proxy & logic contracts have collisions
	Slide 55: Proxion finally tests if a pair of proxy & logic contracts have collisions
	Slide 56: Proxion finally tests if a pair of proxy & logic contracts have collisions
	Slide 57: Proxion finally tests if a pair of proxy & logic contracts have collisions
	Slide 58: Results
	Slide 59: We use different datasets collected independently
	Slide 60: We use different datasets collected independently
	Slide 61: We use different datasets collected independently
	Slide 62: Proxion is effective in identifying proxy smart contracts
	Slide 63: Proxion is effective in identifying proxy smart contracts
	Slide 64: Proxion is effective in identifying proxy smart contracts
	Slide 65: Proxion is accurate in detecting collision issues
	Slide 66: Proxion is accurate in detecting collision issues
	Slide 67: Proxion is accurate in detecting collision issues
	Slide 68: Proxion is accurate in detecting collision issues
	Slide 69: Proxion is accurate in detecting collision issues
	Slide 70: Proxion reveals insights about proxy smart contracts’ landscape
	Slide 71: Proxion reveals insights about proxy smart contracts’ landscape
	Slide 72: Proxion reveals insights about proxy smart contracts’ landscape
	Slide 73: Proxion reveals insights about proxy smart contracts’ landscape
	Slide 74: Takeaways
	Slide 75: Takeaways
	Slide 76: Takeaways
	Slide 77: Last but not least: We are hiring PhDs & Postdoc!
	Slide 78: Logotype

